find the value of (x+y). if 15x+17y=21
and 17x+ 15y =11
Answers
Answered by
1
Answer:
pls mark me as brainliest if you are satisfied
Step-by-step explanation:
The given equations are,
15x+17y=21 ------- ( 1 )
17x+15y=11 ------- ( 2 )
Multiplying equation ( 1 ) by 17 we get,
⇒ 225x+289y=357 ----- ( 3 )
Multiplying equation ( 2 ) by 15 we get,
⇒ 225x+225y=165 ----- ( 4 )
Now, subtracting equation ( 4 ) by equation ( 3 ) we get,
⇒ 64y=192
∴ y=3
Substituting y=3 in equation ( 1 )
15x+17(3)=21
15x+51=21
15x=−30
∴ x=−2
⇒ (x−y)=−2−3=5
Answered by
6
15x+17y=21 ....(1)
17x+15y=11 ...(2)
17×eqn(1)−15× eqn(2) gives
255x+289y−255x−225y=357−165
⇒64y=192
⇒y= 182/64
y =3
Substitute the value of y=3 in (1) we get
15x+17×3=21
⇒15x=21−51=−30
∴x= 15−30
= −2
Hence x=−2,y=3
And x+y=−2+3=1 ans.
Similar questions