Math, asked by sudamjadhav69, 1 year ago

find the value of x-y, if 17x + 12y = 68 and 12x + 17y = 48

Answers

Answered by BrainlyHeroine
9
<b>Answer :</b>

4




<b>Step-by-step explanation :</b>

17x + 12y = 68 _____ ( 1 )

12x + 17y = 48 ______( 2 )

<u>Add both these equations</u>

29x + 29y = 116

29 ( x + y ) = 116

<i>x + y = 4</i> ______ ( 3 )

<u>Subtract both these equations</u>

5x - 5y = 20

5 ( x - y ) = 20

<i>x - y = 4</i> _______ ( 4 )

Add ( 3 ) & ( 4 )

2x = 8

x = 4

Put this value in ( 4 )

4 - y = 4

y = 0

Value of x - y

= 4 - 0

<b>= 4</b>
Answered by Anonymous
7

 \binom{17x + 12y = 68}{12x + 17y = 48}  \\  \\ solve \: for \: x \\  \\  \binom{x = 4 -  \frac{12}{17} y}{12x + 17y = 48}  \\  \\ substitute \: the \: value \: of \: x \: in \: equation \:  \\ 12x + 17y = 48 \\  \\ 12( 4 - \frac{12}{17} y) + 17y = 48


solve \: for \: y \\  \\ 48 -  \frac{144}{17} y + 17y = 48 \\  \\  -  \frac{144}{17} y + 17y = 0 \\  \\  \frac{145}{17} y = 0 \\  \\ multiply \: both \: sides \: by \:  \frac{17}{145}  \\  \\ y = 0

substitute \: the \: value \: of \: y \: in \: equation \\ x = 4 -  \frac{12}{17} y \\  \\ x = 4 -  \frac{12}{17}  \times 0 \\  \\ x = 4

So, x = 4

and y = 0

Therefore

x - y

=> 4 - 0 = 4 ans.
Similar questions