Math, asked by llTikTokll, 5 months ago

find the value of x/y if

 \tt( \dfrac{2}{7} ) ^{ - 6}  \times ( \dfrac{14}{9} ) ^{ - 6}  = ( \dfrac{x}{y} )  ^{ - 6}
Points to remember.
• Don't spam
• If you don't know the answer then no need to answer.
• Please answer it fast T_T​

Answers

Answered by Anonymous
6

 \huge \blue{ \star} \sf \: LETS \: UNDERSTAND \: THE \: QUESTION -

This is the question of exponents and power in which we need to find the value of x/y if  \sf( \dfrac{2}{7} ) ^{ - 6} \times ( \dfrac{14}{9} ) ^{ - 6} = ( \dfrac{x}{y} ) ^{ - 6}

So let's solve it !!

___________________________

 \huge \green{ \star} \sf \: ANSWER-

  \Longrightarrow\tt  \dfrac{x}{y}  = \dfrac{4}{ 9}

____________________________

 \huge \red{ \star} \sf \: EXPLANATION -

  \longrightarrow\tt( \dfrac{2}{7} ) ^{ - 6} \times ( \dfrac{14}{9} ) ^{ - 6} = ( \dfrac{x}{y} ) ^{ - 6}

  \longrightarrow\tt( \dfrac{2}{7} \times  \dfrac{14}{9} ) ^{ - 6} = ( \dfrac{x}{y} ) ^{ - 6}

  \longrightarrow\tt( \dfrac{2}{ \cancel{7}} \times  \dfrac{ \cancel{14}}{9} ) ^{ - 6} = ( \dfrac{x}{y} ) ^{ - 6}

  \longrightarrow\tt( \dfrac{4}{ 9}  ) ^{ - 6} = ( \dfrac{x}{y} ) ^{ - 6}

Now , the power are same . therefore , will cancel .

  \Longrightarrow\tt  \dfrac{x}{y}  = \dfrac{4}{ 9}

___________________________

 \huge \orange{ \star} \sf \: LAWS \: OF \: EXPONENTS -

if a/b and c/d are any non zero rational numbers and m and n are any integers , then we have

: \Longrightarrow \: \sf {( \dfrac{a}{b} )}^{m} \times { (\dfrac{a}{b}) }^{n} =  \bold { (\dfrac{a}{b} ) ^{m + n}}

: \Longrightarrow \: \sf {( \dfrac{a}{b} )}^{m}  \div  { (\dfrac{a}{b}) }^{n} =  \bold { (\dfrac{a}{b} ) ^{m  -  n}}

: \Longrightarrow \: \sf {(( \dfrac{a}{b} )}^{m}  ) ^{n}  =  \bold { (\dfrac{a}{b} ) ^{mn}}

: \Longrightarrow \: \sf {( \dfrac{a}{b} \times  \dfrac{c}{d}  )}^{m}   =  \bold { (\dfrac{a}{b}) ^{m}}  \times   \bold  { (\dfrac{c}{d} ) ^{m }}

: \Longrightarrow \: \sf {( \dfrac{(a \div b)}{(c \div d) } )}^{m}  =  \bold { (\dfrac{a \div b}{c \div d} ) ^{m }}

: \Longrightarrow \: \sf {( \dfrac{a}{b} )}^{0}  =  \bold {1}

: \Longrightarrow \: \sf {( \dfrac{a}{b} )}^{ - n} =  \bold { (\dfrac{b}{a} ) ^{n}} , when n is a positive integer .

Similar questions