Math, asked by abioman7, 1 month ago

Find the value of x, y, z from the following. x X [ y + (-6)] = [13 X (-19)] + [13 X z]​

Answers

Answered by spyXsenorita
3

Given,

\displaystyle\small\text{$\longrightarrow \tan^{-1}(2)+\tan^{-1}(3)+x=\pi$}

Since \displaystyle\small\text{$\tan^{-1}a+\tan^{-1}b=\tan^{-1}\left(\dfrac{a+b}{1-ab}\right),$}

\displaystyle\small\text{$\longrightarrow \tan^{-1}\left(\dfrac{2+3}{1-2\cdot3}\right)+x=\pi$}

\displaystyle\small\text{$\longrightarrow \tan^{-1}\left(-1\right)+x=\pi$}

We know \displaystyle\small\text{$\tan^{-1}(-1)=-\dfrac{\pi}{4}$} but here,

\displaystyle\small\text{$\longrightarrow\tan^{-1}(2)\in\left(0,\ \dfrac{\pi}{2}\right)$}

\displaystyle\small\text{$\longrightarrow\tan^{-1}(3)\in\left(0,\ \dfrac{\pi}{2}\right)$}

So,

\displaystyle\small\text{$\longrightarrow \tan^{-1}(2)+\tan^{-1}(3)=\tan^{-1}(-1)\in(0,\ \pi)$}

\displaystyle\small\text{$\Longrightarrow\tan^{-1}(-1)\in\left(\dfrac{\pi}{2},\ \pi\right)$}

\displaystyle\small\text{$\Longrightarrow\tan^{-1}(-1)=\pi-\dfrac{\pi}{4}=\dfrac{3\pi}{4}$}

Therefore,

\displaystyle\small\text{$\longrightarrow\dfrac{3\pi}{4}+x=\pi$}

\displaystyle\small\text{$\longrightarrow\underline{\underline{x=\dfrac{\pi}{4}}}$}

Answered by spyXsenorita
3

Given,

\displaystyle\small\text{$\longrightarrow \tan^{-1}(2)+\tan^{-1}(3)+x=\pi$}

Since \displaystyle\small\text{$\tan^{-1}a+\tan^{-1}b=\tan^{-1}\left(\dfrac{a+b}{1-ab}\right),$}

\displaystyle\small\text{$\longrightarrow \tan^{-1}\left(\dfrac{2+3}{1-2\cdot3}\right)+x=\pi$}

\displaystyle\small\text{$\longrightarrow \tan^{-1}\left(-1\right)+x=\pi$}

We know \displaystyle\small\text{$\tan^{-1}(-1)=-\dfrac{\pi}{4}$} but here,

\displaystyle\small\text{$\longrightarrow\tan^{-1}(2)\in\left(0,\ \dfrac{\pi}{2}\right)$}

\displaystyle\small\text{$\longrightarrow\tan^{-1}(3)\in\left(0,\ \dfrac{\pi}{2}\right)$}

So,

\displaystyle\small\text{$\longrightarrow \tan^{-1}(2)+\tan^{-1}(3)=\tan^{-1}(-1)\in(0,\ \pi)$}

\displaystyle\small\text{$\Longrightarrow\tan^{-1}(-1)\in\left(\dfrac{\pi}{2},\ \pi\right)$}

\displaystyle\small\text{$\Longrightarrow\tan^{-1}(-1)=\pi-\dfrac{\pi}{4}=\dfrac{3\pi}{4}$}

Therefore,

\displaystyle\small\text{$\longrightarrow\dfrac{3\pi}{4}+x=\pi$}

\displaystyle\small\text{$\longrightarrow\underline{\underline{x=\dfrac{\pi}{4}}}$}

Similar questions