Math, asked by akrockstar2448, 7 months ago

Find the value of x+y+z if x^2+ y^2+z^2=18 and xy +yz +x,=9

Answers

Answered by cdaphnesimi
3

Answer:

x+y+z=6

Step-by-step explanation:

Given,

         x^{2} +y^{2}+z^{2}=18

            xy+yz+zx = 9

We know,

              (x+y+z)^{2}= x^{2} +y^{2}+z^{2}+ 2(xy+yz+zx)

By substituting the values, we get

(x+y+z)^{2}= (18) + 2(9)

(x+y+z)^{2}= 18 + 18

(x+y+z)^{2}= 36

      x+y+z = \sqrt[]{36}

      x+y+z = 6

Mark brainliest if helpful.

HAVE A GOOD DAY.

         

Similar questions