Math, asked by rachanakothari77, 1 month ago

Find the value of x, y, z in the following diagram:

Pls send the answer step by step it's urgent....I will mark the answer branliest! ​

Attachments:

Answers

Answered by user0888
63

Question Point.

If two angles in an isosceles triangle are equal, both angles are called base angles. The last remaining angle is called a vertex angle.

In a triangle, an external angle is equal to the sum of two angles that are not neighboring. [1]

Solution.

\angle x=32^{\circ} (A base angle.)

\angle y=64^{\circ} (An external angle of a triangle.)

\angle z=52^{\circ} (A vertex angle.)

Reason.

[1] Let two angles of a triangle be \angle x,\angle y. The remaining angle is 180^{\circ}-(\angle x+\angle y). Since external and internal angle sum to 180°, the external angle is the sum of two angles \angle x+\angle y.

Attachments:
Answered by BrainlyKilIer
86

\Large{\textsf{\textbf{\underline{\underline{To\:do\::}}}}} \\

  1. Value of x.
  2. Value of y.
  3. Value of z.

\Large{\textsf{\textbf{\underline{\underline{Solution\::}}}}} \\

As we know that,

✯ If two sides of a triangle are equal, then their corresponding angles are also equal to each other.

In ∆ABC,

\dashrightarrow\:{\tt{BC\:=\:AC}}~~~(Given) \\

Thus,

✔ Their corresponding angles are also equal.

\dashrightarrow\:\tt{\angle{BAC}\:=\:\angle{ABC}\:} \\

According to the question,

  • \rm{\angle{BAC}\:=\:32^{\circ}\:}

\dashrightarrow\:\tt{\angle{ABC}\:=\:x\:=\:32^{\circ}\:} \\

\dashrightarrow\:\bf\pink{x\:=\:32^{\circ}\:} \\

Again,

In ∆ABC,

\tt{\angle{BAC}\:+\:\angle{ABC}\:+\:\angle{ACB}\:=\:180^{\circ}\:}

\tt{32^{\circ}\:+\:32^{\circ}\:+\:\angle{ACB}\:=\:180^{\circ}\:}

\tt{64^{\circ}\:+\:\angle{ACB}\:=\:180^{\circ}\:}

\tt{\angle{ACB}\:=\:180^{\circ}\:-\:64^{\circ}\:}

\bf{\angle{ACB}\:=\:116^{\circ}\:}

As we know that,

✔ Angle made by a straight line is always 180°.

\dashrightarrow\:\tt{\angle{ACB}\:+\:y\:=\:180^{\circ}\:} \\

\dashrightarrow\:\tt{116^{\circ}\:+\:y\:=\:180^{\circ}\:} \\

\dashrightarrow\:\tt{y\:=\:180^{\circ}\:-\:116^{\circ}\:} \\

\dashrightarrow\:{\bf{\pink{y\:=\:64^{\circ}\:}}} \\

Now,

In ∆BCD,

\longrightarrow\:{\tt{BC\:=\:BD}}~~~(Given) \\

\longrightarrow\:\tt{\angle{BDC}\:=\:y\:} \\

\longrightarrow\:\tt{\angle{BDC}\:=\:64^{\circ}\:} \\

Again,

In ∆BCD,

\dashrightarrow\:\tt{\angle{BDC}\:+\:y\:+\:z\:=\:180^{\circ}\:} \\

\dashrightarrow\:\tt{64^{\circ}\:+\:64^{\circ}\:+\:z\:=\:180^{\circ}\:} \\

\dashrightarrow\:\tt{128^{\circ}\:+\:z\:=\:180^{\circ}\:} \\

\dashrightarrow\:\tt{z\:=\:180^{\circ}\:-\:128^{\circ}\:} \\

\dashrightarrow\:{\bf{\pink{z\:=\:52^{\circ}\:}}} \\

Similar questions