Math, asked by janu696, 6 months ago

Find the value of x,y,z,w in the given figure using suitable properties.

Attachments:

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
20

\displaystyle\large\underline{\sf\red{Given}}

✭ We are given a quadrilateral whose 3 angles are,

  • 60°
  • 80°
  • 120°

\displaystyle\large\underline{\sf\blue{To \ Find}}

◈ The value of x,y,z & w?

\displaystyle\large\underline{\sf\gray{Solution}}

So here we are gonna use the angle sum property,

✪ In a quadrilateral angles add up to 360°

✪ In a linear pair the Angles add up to 180°

━━━━━━━━━

\underline{\bigstar\:\textsf{According to the given Question :}}

So here on the way to finding w,

\displaystyle\sf 60^{\circ}+80^{\circ}+120^{\circ}+w' = 360^{\circ}

\displaystyle\sf 260 + w' = 360^{\circ}

\displaystyle\sf w' = 360-260

\displaystyle\sf w' = 100^{\circ}

So then w will be,

\displaystyle\sf w+w' = 180^{\circ} \:\:\{ Linear \ Pair\}

\displaystyle\sf w+100 = 180^{\circ}

\displaystyle\sf w = 180-100

\displaystyle\sf \green{w = 80^{\circ}}

Similarly x will be,

»» \displaystyle\sf x'+x = 180^{\circ}\:\:\{ Linear \ Pair\}

»» \displaystyle\sf 120^{\circ}+x = 180^{\circ}

»» \displaystyle\sf x = 180-120

»» \displaystyle\sf \purple{x = 60^{\circ}}

Value of y will be,

\displaystyle\sf y'+y = 180^{\circ} \:\:\{ Linear \ Pair\}

\displaystyle\sf 80^{\circ}+y = 180^{\circ}

\displaystyle\sf y = 180-80

\displaystyle\sf \orange{y = 100^{\circ}}

And finally the value of z will be,

\displaystyle\sf z'+z = 180^{\circ}\:\:\{ Linear \ Pair\}

\displaystyle\sf 60^{\circ}+z = 180^{\circ}

\displaystyle\sf z = 180-60

\displaystyle\sf \pink{z = 120^{\circ}}

Note : Here I've taken the adjacent angles of x as x', y as y', z as z' and w as w'

━━━━━━━━━━━━━━━━━━

Answered by shawnathonalways
4

straight lines have an angle of 180 degree

z = 180 - 60 = 120 degree

y = 180 - 80 = 100 degree

x = 180 - 120 = 60 degree

w = 180 - x (let x be the 4th angle in the quadrilateral

sum of all angles in a quadrilateral is 360 degree

360 = 120 + 80 + 60 + x

360 - 260 = x

x = 100

therefore w =180 - 100 = 80 degree

hope this helps you

Similar questions