Math, asked by prabhnoorsikka147, 1 month ago

Find the value of x' + y2 + 1517 - 125 if x + y = 5​

Answers

Answered by OliviaU22
2

Answer:

Here is my top answer:Top answer:

x + y = 5 (x + y)^3 = 125 x^3 + y^3 + 3xy(x + y) = 125 x^3 + y^3 +

Step-by-step explanation:

Answer: 125 Step-by-step explanation:x + y = 5We need to have x^3 and y^3 in the expression, so cube both sides.(x + y)^3 = 5^3Expand the left side.(x + y)(x + y)^2 = 125(x + y)(x^2 + 2xy + y^2) = 125x^3 + 2x^2y + xy^2 + x^2y + 2xy^2 + y^3 = 125x^3 + 3x^2y + 3xy^2 + y^3 = 125Now we need to separate x^3 + y^3.x^3 + y^3 + 3x^2y + 3xy^2 = 125We need to turn 3x^2y + 3xy^2 into 15xy .Factor the G CF, 3 x y, out of 3 x^2 y + 3 x y^2.x^3 + y^3 + 3 x y(x + y) = 125 We know that x + y = 5, so substitute x + y with 5.x^3 + y^3 + 3 x y(5) = 125 x^3 + y^3 + 15 x y = 125 Answer: 125

Question

Find the value of x^3 + y^3 + 15xy - 125 if x + y = 5

x + y = 5 (x + y)^3 = 125 x^3 + y^3 + 3xy(x + y) = 125 x^3 + y^3 + 3xy(5) - 125 = 0 x^3 + y^3 + 15 xy - 125 = 0

Similar questions