Math, asked by vijaymishra47882, 8 months ago

find the value of x² - 1/x²​

Attachments:

Answers

Answered by anindyaadhikari13
25

\star\:\:\:\bf\large\underline\blue{Question:-}

  • If x=\frac{1}{2-\sqrt{3}}, find the value of x^{2}-\frac{1}{x^{2}}.

\star\:\:\:\bf\large\underline\blue{Solution:-}

x =  \frac{1}{2 -  \sqrt{3} }

Therefore,

 \frac{1}{x}  = 2 -  \sqrt{3}

Now,

x =  \frac{1}{2 -  \sqrt{3} }

 =  \frac{1}{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }

 =  \frac{2 +  \sqrt{3} }{ {(2)}^{2} -  {( \sqrt{3} )}^{2}  }

 =  \frac{2 +  \sqrt{3} }{4 - 3}

 =  \frac{2 +  \sqrt{3} }{1}

 = 2 +  \sqrt{3}

So,

x +  \frac{1}{x}  = 2 +  \sqrt{3}  + 2 -  \sqrt{3}

 = 4

Also,

x -  \frac{1}{x}  = 2 +  \sqrt{3}   - (2 -  \sqrt{3} )

 = 2 \sqrt{3}

So,

 {x}^{2}  -  \frac{1}{ {x}^{2} }

 = (x +  \frac{1}{x} )(x -  \frac{1}{x} )

 = 4 \times 2 \sqrt{3}

 = 8 \sqrt{3}

\star\:\:\:\bf\large\underline\blue{Answer:-}

  •  {x}^{2}  -  \frac{1}{ {x}^{2} }  = 8 \sqrt{3}
Similar questions