Find the value of x²+ 1/x², if x-1/x =√3
Answers
Question :
Find the value of x² + 1/x², if x-1/x =√3
Answer :
Given :
To find :
Solution :
Squaring on both sides,
-------------------------------------
Identity used :
-------------------------------------
OTHER IDENTITIES :
Question :
Find the value of x² + 1/x², if x-1/x =√3
Answer :
\boxed{\bf x^2+\frac{1}{x^2}=5}
x
2
+
x
2
1
=5
Given :
x-\frac{1}{x} =\sqrt{3}x−
x
1
=
3
To find :
x^{2} + \frac{1}{x^2} = \ ?x
2
+
x
2
1
= ?
Solution :
{x-\frac{1}{x}=\sqrt{3}}x−
x
1
=
3
Squaring on both sides,
\begin{gathered}(x-\frac{1}{x})^2=\sqrt{3}^2 \\\\ x^{2} +(\frac{1}{x})^2-2(x)(\frac{1}{x})=3 \\\\ x^{2} +\frac{1}{x^2}-2=3 \\\\ x^{2} +\frac{1}{x^2}=3+2\\\\x^{2} +\frac{1}{x^2}=5\end{gathered}
(x−
x
1
)
2
=
3
2
x
2
+(
x
1
)
2
−2(x)(
x
1
)=3
x
2
+
x
2
1
−2=3
x
2
+
x
2
1
=3+2
x
2
+
x
2
1
=5
-------------------------------------
Identity used :
(a-b)^2=a^2+b^2-2ab(a−b)
2
=a
2
+b
2
−2ab
-------------------------------------
OTHER IDENTITIES :
\begin{gathered}(a+b)^2=a^2+b^2+2ab \\\\ a^2-b^2=(a+b)(a-b)\\\\ (a+b)^3=a^3+b^3+3a^2b+3ab^2\\\\ (a-b)^3=a^3-b^3-3a^2b+3ab^2\end{gathered}
(a+b)
2
=a
2
+b
2
+2ab
a
2
−b
2
=(a+b)(a−b)
(a+b)
3
=a
3
+b
3
+3a
2
b+3ab
2
(a−b)
3
=a
3
−b
3
−3a
2
b+3ab
2