Math, asked by deepakkumar3476, 1 year ago

Find the value of x²+1/x²? if x+1/x=8?

Answers

Answered by kaushal22asrgmailcom
0

x+1/x=8

both side square

(x+1/x)^2=8^2

Attachments:
Answered by Sudhir1188
1

ANSWER:

  • Value of the above expression is 62.

GIVEN:

 \implies \: x +  \dfrac{1}{x}  = 8

TO FIND:

 value \: of \: x {}^{2}  +  \dfrac{1}{x {}^{2} }

SOLUTION:

 \implies \: x +  \dfrac{1}{x}  = 8 \\   \\ squaring \: both \: sides \: we \: get. \\  \\  \implies \: (x +  \dfrac{1}{x} ) {}^{2}  = (8) {}^{2}  \\  \\  \implies \: x {}^{2}  +  \dfrac{1}{x {}^{2} }  + 2 \: x \times  \dfrac{1}{x}  = 64 \\  \\  \implies \: x {}^{2}  +  \dfrac{1}{x {}^{2} }  = 64 - 2 \\  \\  \implies \: x {}^{2}  +  \frac{1}{x {}^{2} }  = 62

Value of the above expression is 62.

NOTE:

Some important formulas:

(a+b)² = a²+b²+2ab

(a-b)² = a²+b²-2ab

(a+b)(a-b) = a²-b²

(a+b)³ = a³+b³+3ab(a+b)

(a-b)³ = a³-b³-3ab(a-b)

a³+b³ = (a+b)(a²+b²-ab)

a³-b³ = (a-b)(a²+b²+ab)

(a+b)² = (a-b)²+4ab

(a-b)² = (a+b)²-4ab

Similar questions