Math, asked by Anonymous, 9 months ago

‼️find the value of x²+1/x² if x=2+√3‼️​​

Answers

Answered by udishvijay42
1

Answer:

This is the long way to find the value of x² + 1/x², substitute the given x = 2 + √3 into the variable x.

x² + 1/x²

= (2 + √3)² + 1/(2 + √3)²

= [2² + 2(2)(√3) + (√3)²] + 1/[2² + 2(2)(√3) + (√3)²]

= (4 + 4√3 + 3) + 1/(4 + 4√3 + 3)

= (7 + 4√3) + 1/(7 + 4√3)

= (7 + 4√3)²/(7 + 4√3) + 1/(7 + 4√3)

= ((7 + 4√3)² + 1)/(7 + 4√3)

= (7² + 2(7)(4√3) + (4√3)² + 1)/(7 + 4√3)

= (49 + 56√3 + 48 + 1)/(7 + 4√3)

= (98 + 56√3)/(7 + 4√3)

= 14(7 + 4√3)/(7 + 4√3)

= 14

if there is any problem then ask it

Answered by saireddy461
1

Answer:

given that x=2+sqrt(3)

Step-by-step explanation:

(2+\sqrt{3} )^{2} + 1)/(2+\sqrt{3} )^{2}= (4+3+4\sqrt{3}+1)/(4+3+4\sqrt{3})

                                      =(7+4\sqrt{3})+1/(7+4\sqrt{3})

                                      =((7+4\sqrt{3})*(7-4\sqrt{3})+(7-4\sqrt{3}))/(7+4\sqrt{3})*(7-4\sqrt{3})

                                      =(7 + 4√3)²/(7 + 4√3) + 1/(7 + 4√3)

                                       = ((7 + 4√3)² + 1)/(7 + 4√3)

                                       = (7² + 2(7)(4√3) + (4√3)² + 1)/(7 + 4√3)

                                       = (49 + 56√3 + 48 + 1)/(7 + 4√3)

                                       = (98 + 56√3)/(7 + 4√3)

                                       = 14(7 + 4√3)/(7 + 4√3)

                                       = 14

Similar questions