Math, asked by shivanshusharma14022, 9 months ago

find the value of √x²+a² + √x²-a² / √x²+a² - √x²-a² when x²=a⁴+1 / 2
QUESTION PROPERLY GIVEN IN THE PICTURE PLEASE GIVE THE CORRECT ANSWER
DO NOT REPLY IF YOU DON'T KNOW
THANK YOU​
then I will give 5 extra points

Attachments:

Answers

Answered by Shivampanwar2020
0

Multiply the denominator term with both numerator and denominator

</p><p></p><p>\frac { ( \sqrt { x ^ { 2 } + a ^ { 2 } } + \sqrt { x ^ { 2 } - a ^ { 2 } } ) ^ { 2 } } { ( x ^ { 2 } + a ^ { 2 } ) - ( x ^ { 2 } - a ^ { 2 } ) }

which becomes

\frac { x ^ { 2 } + a ^ { 2 } + x ^ { 2 } - a ^ { 2 } + 2 \sqrt { x ^ { 2 } + a ^ { 2 } } \sqrt { x ^ { 2 } - a ^ { 2 } } } { ( x ^ { 2 } + a ^ { 2 } ) - ( x ^ { 2 } - a ^ { 2 } ) }

\frac { 2 x ^ { 2 } + 2 \sqrt { ( x ^ { 2 } + a ^ { 2 } ) ( x ^ { 2 } - a ^ { 2 } ) } } { 2 a ^ { 2 } }

\frac { x ^ { 2 } + \sqrt { x ^ { 4 } - a ^ { 4 } } } { a ^ { 2 } }

\frac { x ^ { 2 } + \sqrt { x ^ { 4 } ( 1 - \frac { a ^ { 4 } } { x ^ { 4 } } ) } } { a ^ { 2 } }

\frac { x ^ { 2 } ( 1 + \sqrt { 1 - \frac { a ^ { 4 } } { x ^ { 4 } } } ) } { a ^ { 2 } }

\frac { a ^ { 4 } + 1 ( 1 + \sqrt { 1 - \frac { 4 a ^ { 4 } } { ( a ^ { 4 } + 1 ) ^ { 2 } } } } { 2 a ^ { 2 } }

solving what's inside the root

</strong></p><p><strong>[tex]\frac { ( a ^ { 4 } ) ^ { 2 } + 1 - 4 a ^ { 4 } } { ( a ^ { 4 } + 1 ) ^ { 2 } }

\sqrt { \frac { ( a ^ { 4 } - 1 ) ^ { 2 } } { ( a ^ { 2 } + 1 ) ^ { 2 } } }

now it can come out of the root in two ways. either this

\frac { a ^ { 4 } + 1 ( 1 + \frac { a ^ { 4 } - 1 } { a ^ { 4 } + 1 } ) } { 2 a ^ { 2 } }

or

\frac { a ^ { 4 } + 1 ( 1 - \frac { a ^ { 4 } - 1 } { a ^ { 4 } + 1 } ) } { 2 a ^ { 2 } }

From 1st way

\left. { a ^ { 2 } ( a ^ { 4 } + 1 ) \text { or } \frac { a ^ { 4 } + 1 } { a ^ { 2 } } } \\ { = a ^ { 6 } + a ^ { 2 } \quad \text { or } \quad a ^ { 2 } + \frac { 1 } { a ^ { 2 } } } \right.

It depends on the value of a which will determine how that fraction will come out of the square root. since no value is given we must take account all possibilities.

Hope you have understood the solution.

Similar questions