Math, asked by Aniketratho, 1 year ago

Find the value of x³+1/x³,if x²+1/x²=14

Answers

Answered by LovelyG
57

Answer:

\large{\underline{\boxed{\bf x^3 + \dfrac{1}{x^3} = 52}}}

Step-by-step explanation:

Given that -

 \tt  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 14

Adding 2 both sides -

 \tt  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 14 + 2 \\  \\ \tt  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \:  .\: x \: . \:  \frac{1}{x}  = 16 \\  \\ \tt (x +  \frac{1}{x} ) {}^{2}  = 16 \\  \\ \tt  x+  \frac{1}{x}  =  \sqrt{16}  \\  \\ \implies \tt x +  \frac{1}{x}  = 4

On cubing both sides -

 \tt (x +  \frac{1}{x} ) {}^{3}  = (4)^{3} \\  \\ \tt x^{3} +  \frac{1}{x^{3}}  + 3 \: . \: x \:.  \:  \frac{1}{x} (x +  \frac{1}{x} ) = 64 \\  \\ \tt x^{3} +  \frac{1}{x^{3}} + 3(4) = 64 \\  \\ \tt x^{3} +  \frac{1}{x^{3}}  + 12 = 64 \\  \\ \tt x^{3} +  \frac{1}{x^{3}}  = 64 - 12 \\  \\   \red{\boxed{\tt x^{3} +  \frac{1}{x^{3}}  = 52}}

Hence, the answer is 52.

\rule{300}{2}

\large{\underline{\underline{\mathfrak{\heartsuit \: Algebraic \: Identities : \: \heartsuit}}}}

  • (a - b)³ = a³ - b³ - 3ab (a - b)
  • (a + b)³ = a³ + b³ + 3ab (a + b)
  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • (x + a)(x + b) = x² + x(a + b) + ab
Answered by WritersParadise011
127

\huge\textbf{Answer:-}

According to the given question:-

x {}^{2}  +  \frac{1}{x {}^{2} }  = 14

We need to add the number(2) to both sides:-

So,

 =  > x {}^{2}  +  \frac{1}{x {}^{2} } + 2 = 14 + 2

 =  > x {}^{2}  +  \frac{1}{x {}^{2} } + 2(x) \frac{1}{x}   = 16

 =  > (x +  \frac{1}{x} ) {}^{2}  = 16

 =  > x +  \frac{1}{x}  = 4

Cubing both the sides (3)

 =  > (3 +  \frac{1}{x} ) {}^{3}  = (4) {}^{3}

 =  > x {}^{3}  +  \frac{1}{x {}^{3} }  = 3(x) \frac{1}{x} (x +  \frac{1}{x} = 64 )

 =  > x {}^{3}  +  \frac{1}{x {}^{3} }  + (3)....(4 = 64)

 =  > x {}^{3}  +  \frac{1}{x {}^{3} }  + 12 = 64

 =  > x  {}^{3}   +  \frac{1}{x {}^{3} }  = 64 - 12

 =  > x {}^{3}  +  \frac{1}{x {}^{3} }  = 52

Therefore, 52 is the answer:-

Similar questions