find the value of : x3-8y3-36xy-216 , when x= 2y+6
Answers
Answered by
7
Put x = 2y + 6 in x3-8y3-36xy-216
∴ The given polynomial becomes, (2y+6)3�– 8y3�– 36(2y+6)y – 216
= 8y3�+ 72y2�+ 216y + 216 – 8y3�– 72y2�– 216y – 216�� [Since (a+b)3�= a3�+ 3a2b + 3ab2�+ b3]
= 0
∴ The given polynomial becomes, (2y+6)3�– 8y3�– 36(2y+6)y – 216
= 8y3�+ 72y2�+ 216y + 216 – 8y3�– 72y2�– 216y – 216�� [Since (a+b)3�= a3�+ 3a2b + 3ab2�+ b3]
= 0
Answered by
3
Answer:
so given
x = 2y+6
⇒ x - 2y = 6 ...... (i)
cubing both sides
⇒ x³ - 8y³ - 6xy(x - 2y) = 216
⇒ x³ - 8y³ - 6xy(6) = 216 {since , x - 2y = 6 from i}
⇒x³ - 8y³ - 36xy - 216 = 0
so the value of x³ - 8y³ - 36xy - 216 = 0 ANSWER
Similar questions