find the value of x³ + y³ + 12xy = 64 , when x + y = 4
Answers
Answered by
0
Step-by-step explanation:
a
3
+b
3
+c
3
=(a+b+c)(a
2
+b
2
+c
2
−ab−bc−ca)+3abc
If a+b+c=0, then a
3
+b
3
+c
3
=3abc
Now, given x
3
+y
3
−12xy+64 and
x+y=−4
=>x+y+4=0
Here, a=x, b=y, c=4 and a+b+c=x+y+4=0
Therefore
x
3
+y
3
+64=3xy(4)
=12xyz
Now,
x
3
+y
3
+64−12xyz=12xyz−12xyz
=0
Answered by
7
x³+y³ + 12xy - 64
x³+y³-43 + 3(4xy) [ By (64=4³) ]
(x + y - 4)(x² + y² + 4² - xy - 4y - 4x)
x + y = + 4
(4+4) (x² + y² + 4² - xy - 4y - 4x)
O* (x² + y² + 4² - xy - 4y - 4x)
= 0.
- I Hope it's Helpful My Friend.
Similar questions