Math, asked by yashasvipatwal, 9 months ago

Find the value of x3 + y3 + z3

– 3xyz, if x + y + z = 12 and x

2 + y2 + z2 =70
plz answer properly plzzzzzzz and
step by step plzzzzz
and plzzzzz follow me plzzzzz​

Answers

Answered by Farhan5555
4

Answer:

396

Step-by-step explanation:

for detailed answer see the image tagged with it

Attachments:
Answered by Cosmique
6

 \red{ \bigstar} \underline{\underline{ \large{ \sf {given}}}}

\longrightarrow  \tt{x + y +z = 12 }

 \longrightarrow \tt{ {x}^{2} +  {y}^{2} +  {z}^{2}    = 70}

 \red{ \bigstar}\underline{ \underline{ \large{ \sf{to \: find}}}}

\longrightarrow \tt{ {x}^{3}  +  {y}^{3} +  {z}^{3}  - 3xyz }

 \red { \bigstar}\underline{ \underline{ \large{ \sf{algebraic \: identities \: used}}}}

\star \tt{ {(a + b + c)}^{2} =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ac) }

\star  \: \tt{ {a}^{3} +  {b}^{3} +  {c}^{3} - 3abc= (a+ b+ c)( {a}^{2} +  {b}^{2}   +  {c}^{2})  - (ab+ bc + ac))   }

 \red{ \bigstar}\underline{ \underline{ \large{ \sf{solution}}}}

\blue{ \tt{using  \: algebraic\: identity}}

 \tt{ {(x + y + z)}^{2} =  ({x}^{2} +  {y}^{2}  +  {z}^{2})  + 2(xy + yz + xz)  }

\blue{ \tt{putting \: known \: values}}

\tt{ {(12)}^{2} = (70) + 2(xy + yz + xz) }

\tt{144 - 70 = 2(xy + yz + xz)}

 \pink{ \tt{xy + yz + xz = 37}}

Now,

again

 \blue{ \tt{using \: algebraic \: identity \: }}

\tt{ {x}^{3} +  {y}^{3}  +  {z}^{3} - 3xyz = (x + y + z)( ({x}^{2}  +  {y}^{2}  +  {z}^{2}   ) - (xy + yz + xz))}

\blue{ \tt{putting \: known \: values}}

\tt{ {x}^{3}  +  {y}^{3} +  {z}^{3}  - 3xyz = (12)(70 - 37) }

\boxed{ \tt{ \pink{ {x}^{3}  +  {y}^{3}  +  {z}^{3}  - 3xyz = 396}}}

Answer.

Similar questions