Find the value of x3 + y3 + z3 – 3xyz if x2 + y2 + z2 = 83 and x + y + z = 15
Answers
Answer:
GIVEN = x² + y² + z² = 83
AND
x + y + z = 15
TO FIND = x³ + y³ + z³ - 3xyz
SOLUTION
( x + y + z )² = x² + y² + z² + 2 ( xy + yz + zx )
AND x + y + z = 15
SO, 83 + 2 ( xy + yz + zx ) = (15)²
83 + 2 ( xy + yz + zx ) = 225
2 ( xy + yz + zx ) = 225 - 83
2 ( xy + yz + zx ) = 142
( xy + yz + zx ) = 142/2
( xy + yz + zx ) = 71
AGAIN
x³ + y³ + z³ - 3xyz = ( x + y + z ) [ ( x²+ y² + z² ) - ( xy + yz + zx ) ]
OR, = 15 × [ 83 - 71 ]
= 15 × 12
= 180
HERE'S YOUR ANSWER
PLEASE MARK ME AS BRAINLIEST ♥️
Answer:
180
Step-by-step explanation:
GIVEN = x² + y² + z² = 83
AND
x + y + z = 15
TO FIND = x³ + y³ + z³ - 3xyz
SOLUTION
( x + y + z )² = x² + y² + z² + 2 ( xy + yz + zx )
AND x + y + z = 15
SO, 83 + 2 ( xy + yz + zx ) = (15)²
83 + 2 ( xy + yz + zx ) = 225
2 ( xy + yz + zx ) = 225 - 83
2 ( xy + yz + zx ) = 142
( xy + yz + zx ) = 142/2
( xy + yz + zx ) = 71
AGAIN
x³ + y³ + z³ - 3xyz = ( x + y + z ) [ ( x²+ y² + z² ) - ( xy + yz + zx ) ]
OR, = 15 × [ 83 - 71 ]
= 15 × 12
= 180