Find the value of x3 + y3 + z3 – 3xyz if x2 + y2 + z2 = 83 and x + y + z = 15
Answers
→ Find the value of x³+ y³ + z³ – 3xyz
if x² + y² + z² = 83
and x + y + z = 15
____________________
Given :
x² + y² + z² = 83
And
x + y + z = 15
To Find :
The value of , x³ + y³ + z³ - 3 x y z
Solution :
∵ ( x + y + z )² = x² + y² + z² + 2 ( x y + y z + z x )
And
x + y + z = 15
So, 83 + 2 ( x y + y z + z x ) = ( 15 )²
Or, 2 ( x y + y z + z x ) = 225 - 83
Or, 2 ( x y + y z + z x ) = 142
∴ ( x y + y z + z x ) =
i.e ( x y + y z + z x ) = 71
Again :
∵ x³ + y³ + z³ - 3 x y z = ( x + y + z ) [ ( x² + y² + z² ) - ( x y + y z + z x ) ]
Or, = ( 15 ) × [ 83 - 71 ]
Or, = 15 × 12
that is = 180
Hence, The value of x³ + y³ + z³ - 3 x y z is 180 .
Answer:
\bf\underline{Question:-}Question:−
→ Find the value of x³+ y³ + z³ – 3xyz
if x² + y² + z² = 83
and x + y + z = 15
____________________
\bf\underline{Answer:-}Answer:−
Given :
x² + y² + z² = 83
And
x + y + z = 15
To Find :
The value of , x³ + y³ + z³ - 3 x y z
Solution :
∵ ( x + y + z )² = x² + y² + z² + 2 ( x y + y z + z x )
And
x + y + z = 15
So, 83 + 2 ( x y + y z + z x ) = ( 15 )²
Or, 2 ( x y + y z + z x ) = 225 - 83
Or, 2 ( x y + y z + z x ) = 142
∴ ( x y + y z + z x ) = \frac{142}{2}2142
i.e ( x y + y z + z x ) = 71
Again :
∵ x³ + y³ + z³ - 3 x y z = ( x + y + z ) [ ( x² + y² + z² ) - ( x y + y z + z x ) ]
Or, = ( 15 ) × [ 83 - 71 ]
Or, = 15 × 12
that is = 180
Hence, The value of x³ + y³ + z³ - 3 x y z is 180 .