find the value of xcube +ycube+ zcube if x+y+z =1 and xy+yz+zx = -1 and xyz= -1
Answers
Answer:
⇒ x³ + y³ + z³ = 1
Step-by-step explanation:
Given :
To find the value of :
x³ + y³ + z³.
If, x + y + z = 1,.
xy + yz + zx = -1,
xyz = -1.
Solution :
We know that,
(a + b + c)² = a² + b² + c² + 2ab + 2ac + 2bc,.
Substituting,
a = x , b = y , c = z,.
We get,
(a + b + c)² = a² + b² + c² + 2ab + 2ac + 2bc
⇒ (x + y + z)² = x² + y² + z² + 2xy + 2yz + 2zx
⇒ (x + y + z)² - 2xy - 2yz - 2zx = x² + y² + z²
⇒ (x + y + z)² - 2(xy + yz + zx) = x² + y² + z²
⇒ (1)² - 2(-1) = x² + y² + z²
⇒ 1 + 2 = x² + y² + z²
⇒ 3 = x² + y² + z² ...(i)
We know that,
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ac)
Substituting,
a = x , b = y , c = z,.
We get,
⇒ x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - zx)
⇒ x³ + y³ + z³ = (x + y + z)[x² + y² + z² - (xy + yz + zx)] + 3xyz
⇒ x³ + y³ + z³ = (1)[(3) - (-1)] + 3(-1)
⇒ x³ + y³ + z³ = (1)[3+1] - 3
⇒ x³ + y³ + z³ = (1)[4] - 3 = 4 - 3 = 1
⇒ x³ + y³ + z³ = 1