Find the value of [xe (1 + x2) dx.
Answers
Answered by
0
Step-by-step explanation:
Let I=∫
(1+x)
2
xe
x
dx
I=∫
(1+x)
2
(x+1−1)e
x
dx
I=∫
(1+x)
e
x
dx−∫
(1+x)
2
e
x
dx
Applying integration by parts in first integral, we get
I=
(1+x)
e
x
−∫−(
(1+x)
2
1
)e
x
dx−∫
(1+x)
2
e
x
dx+C
I=
(1+x)
e
x
+∫(
(1+x)
2
1
)e
x
dx−∫
(1+x)
2
e
x
dx+C
I=
(1+x)
e
x
+C
Similar questions