Math, asked by 100011479415999, 1 year ago

find the value of xy if x³+y³=12 and x+y=3​

Answers

Answered by jitekumar4201
4

Answer:

xy = \dfrac{5}{3}

Step-by-step explanation:

We have -

x^{3}  + y^{3} = 12

x + y = 3

xy = ?

We know that -

(a+b)^{3}  = a^{3} + b^{3} + 3ab ( a+ b)

So, ( x + y )^{3} = x^{3} + y^{3} + 3xy ( x + y )

3^{3} = 12 + 3xy \times 3

27 = 12 + 9xy

27 - 12 = 9xy

9xy = 15

xy = \dfrac{15}{9}

xy = \dfrac{5}{3}

Answered by druvhsharma12
1

xy = \dfrac{5}{3}35

xy = \dfrac{5}{3}35Step-by-step explanation:

xy = \dfrac{5}{3}35Step-by-step explanation:We have -

xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3}  + y^{3} = 12x3 +y3=12

xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3}  + y^{3} = 12x3 +y3=12x + y = 3

xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3}  + y^{3} = 12x3 +y3=12x + y = 3xy = ?

xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3}  + y^{3} = 12x3 +y3=12x + y = 3xy = ?We know that -

xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3}  + y^{3} = 12x3 +y3=12x + y = 3xy = ?We know that -(a+b)^{3}  = a^{3} + b^{3} + 3ab ( a+ b)(a+b)3 =a3+b3+3ab(a+b)

xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3}  + y^{3} = 12x3 +y3=12x + y = 3xy = ?We know that -(a+b)^{3}  = a^{3} + b^{3} + 3ab ( a+ b)(a+b)3 =a3+b3+3ab(a+b)So, ( x + y )^{3} = x^{3} + y^{3} + 3xy ( x + y )(x+y)3=x3+y3+3xy(x+y)

xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3}  + y^{3} = 12x3 +y3=12x + y = 3xy = ?We know that -(a+b)^{3}  = a^{3} + b^{3} + 3ab ( a+ b)(a+b)3 =a3+b3+3ab(a+b)So, ( x + y )^{3} = x^{3} + y^{3} + 3xy ( x + y )(x+y)3=x3+y3+3xy(x+y)3^{3} = 12 + 3xy \times 333=12+3xy×3

xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3}  + y^{3} = 12x3 +y3=12x + y = 3xy = ?We know that -(a+b)^{3}  = a^{3} + b^{3} + 3ab ( a+ b)(a+b)3 =a3+b3+3ab(a+b)So, ( x + y )^{3} = x^{3} + y^{3} + 3xy ( x + y )(x+y)3=x3+y3+3xy(x+y)3^{3} = 12 + 3xy \times 333=12+3xy×327 = 12 + 9xy

xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3}  + y^{3} = 12x3 +y3=12x + y = 3xy = ?We know that -(a+b)^{3}  = a^{3} + b^{3} + 3ab ( a+ b)(a+b)3 =a3+b3+3ab(a+b)So, ( x + y )^{3} = x^{3} + y^{3} + 3xy ( x + y )(x+y)3=x3+y3+3xy(x+y)3^{3} = 12 + 3xy \times 333=12+3xy×327 = 12 + 9xy27 - 12 = 9xy

xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3}  + y^{3} = 12x3 +y3=12x + y = 3xy = ?We know that -(a+b)^{3}  = a^{3} + b^{3} + 3ab ( a+ b)(a+b)3 =a3+b3+3ab(a+b)So, ( x + y )^{3} = x^{3} + y^{3} + 3xy ( x + y )(x+y)3=x3+y3+3xy(x+y)3^{3} = 12 + 3xy \times 333=12+3xy×327 = 12 + 9xy27 - 12 = 9xy9xy = 15

xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3}  + y^{3} = 12x3 +y3=12x + y = 3xy = ?We know that -(a+b)^{3}  = a^{3} + b^{3} + 3ab ( a+ b)(a+b)3 =a3+b3+3ab(a+b)So, ( x + y )^{3} = x^{3} + y^{3} + 3xy ( x + y )(x+y)3=x3+y3+3xy(x+y)3^{3} = 12 + 3xy \times 333=12+3xy×327 = 12 + 9xy27 - 12 = 9xy9xy = 15xy = \dfrac{15}{9}915

xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3}  + y^{3} = 12x3 +y3=12x + y = 3xy = ?We know that -(a+b)^{3}  = a^{3} + b^{3} + 3ab ( a+ b)(a+b)3 =a3+b3+3ab(a+b)So, ( x + y )^{3} = x^{3} + y^{3} + 3xy ( x + y )(x+y)3=x3+y3+3xy(x+y)3^{3} = 12 + 3xy \times 333=12+3xy×327 = 12 + 9xy27 - 12 = 9xy9xy = 15xy = \dfrac{15}{9}915xy = \dfrac{5}{3}35

mark me Blient

Similar questions