find the value of xy if x³+y³=12 and x+y=3
Answers
Answered by
4
Answer:
xy =
Step-by-step explanation:
We have -
x + y = 3
xy = ?
We know that -
So,
27 = 12 + 9xy
27 - 12 = 9xy
9xy = 15
xy =
xy =
Answered by
1
xy = \dfrac{5}{3}35
xy = \dfrac{5}{3}35Step-by-step explanation:
xy = \dfrac{5}{3}35Step-by-step explanation:We have -
xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3} + y^{3} = 12x3 +y3=12
xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3} + y^{3} = 12x3 +y3=12x + y = 3
xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3} + y^{3} = 12x3 +y3=12x + y = 3xy = ?
xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3} + y^{3} = 12x3 +y3=12x + y = 3xy = ?We know that -
xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3} + y^{3} = 12x3 +y3=12x + y = 3xy = ?We know that -(a+b)^{3} = a^{3} + b^{3} + 3ab ( a+ b)(a+b)3 =a3+b3+3ab(a+b)
xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3} + y^{3} = 12x3 +y3=12x + y = 3xy = ?We know that -(a+b)^{3} = a^{3} + b^{3} + 3ab ( a+ b)(a+b)3 =a3+b3+3ab(a+b)So, ( x + y )^{3} = x^{3} + y^{3} + 3xy ( x + y )(x+y)3=x3+y3+3xy(x+y)
xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3} + y^{3} = 12x3 +y3=12x + y = 3xy = ?We know that -(a+b)^{3} = a^{3} + b^{3} + 3ab ( a+ b)(a+b)3 =a3+b3+3ab(a+b)So, ( x + y )^{3} = x^{3} + y^{3} + 3xy ( x + y )(x+y)3=x3+y3+3xy(x+y)3^{3} = 12 + 3xy \times 333=12+3xy×3
xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3} + y^{3} = 12x3 +y3=12x + y = 3xy = ?We know that -(a+b)^{3} = a^{3} + b^{3} + 3ab ( a+ b)(a+b)3 =a3+b3+3ab(a+b)So, ( x + y )^{3} = x^{3} + y^{3} + 3xy ( x + y )(x+y)3=x3+y3+3xy(x+y)3^{3} = 12 + 3xy \times 333=12+3xy×327 = 12 + 9xy
xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3} + y^{3} = 12x3 +y3=12x + y = 3xy = ?We know that -(a+b)^{3} = a^{3} + b^{3} + 3ab ( a+ b)(a+b)3 =a3+b3+3ab(a+b)So, ( x + y )^{3} = x^{3} + y^{3} + 3xy ( x + y )(x+y)3=x3+y3+3xy(x+y)3^{3} = 12 + 3xy \times 333=12+3xy×327 = 12 + 9xy27 - 12 = 9xy
xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3} + y^{3} = 12x3 +y3=12x + y = 3xy = ?We know that -(a+b)^{3} = a^{3} + b^{3} + 3ab ( a+ b)(a+b)3 =a3+b3+3ab(a+b)So, ( x + y )^{3} = x^{3} + y^{3} + 3xy ( x + y )(x+y)3=x3+y3+3xy(x+y)3^{3} = 12 + 3xy \times 333=12+3xy×327 = 12 + 9xy27 - 12 = 9xy9xy = 15
xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3} + y^{3} = 12x3 +y3=12x + y = 3xy = ?We know that -(a+b)^{3} = a^{3} + b^{3} + 3ab ( a+ b)(a+b)3 =a3+b3+3ab(a+b)So, ( x + y )^{3} = x^{3} + y^{3} + 3xy ( x + y )(x+y)3=x3+y3+3xy(x+y)3^{3} = 12 + 3xy \times 333=12+3xy×327 = 12 + 9xy27 - 12 = 9xy9xy = 15xy = \dfrac{15}{9}915
xy = \dfrac{5}{3}35Step-by-step explanation:We have -x^{3} + y^{3} = 12x3 +y3=12x + y = 3xy = ?We know that -(a+b)^{3} = a^{3} + b^{3} + 3ab ( a+ b)(a+b)3 =a3+b3+3ab(a+b)So, ( x + y )^{3} = x^{3} + y^{3} + 3xy ( x + y )(x+y)3=x3+y3+3xy(x+y)3^{3} = 12 + 3xy \times 333=12+3xy×327 = 12 + 9xy27 - 12 = 9xy9xy = 15xy = \dfrac{15}{9}915xy = \dfrac{5}{3}35
mark me Blient
Similar questions