Math, asked by 19enge016, 27 days ago

find the value of y(1) by solving the differential equation y dy/dx=6x²+5,y(0)=2​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

y \frac{dy}{dx} = 6 {x}^{2}  + 5  \\

 \implies \: y dy =( 6 {x}^{2}  + 5)dx  \\

 \implies \: \int y dy = \int( 6 {x}^{2}  + 5)dx  \\

 \implies \:   \frac{ {y}^{2} }{2}   =  6  \frac{{x}^{3}}{3}  + 5x + C  \\

 \implies \:   \frac{ {y}^{2} }{2}   =  2{x}^{3}  + 5x + C  \\

Also, we have, y(0) = 2

So,

 \implies \:   \frac{ {(2)}^{2} }{2}   =  2{(0)}^{3}  + (0) + C  \\

 \implies C   = 2\\

So, required equation

 \implies \:   \frac{ {y}^{2} }{2}   =  2{x}^{3}  + 5x +2  \\

 \implies \:    {y}^{2}    =  4{x}^{3}  + 10x +4 \\

Now, at x = 1,

 \implies \:  {y}^{2}  = 4 {(1)}^{3}  + 10(1) + 4

 \implies \:  y =  \sqrt{4 {(1)}^{3}  + 10(1) + 4}

 \implies \:  y =  \sqrt{4   + 10 + 4}

 \implies \:  y =  \sqrt{ 18}

 \implies \:  y =3  \sqrt{2}

So,  y(1) = 3\sqrt{2}\\

Similar questions