Math, asked by mehak52775, 10 months ago


Find the value of 'y' for which the distance between the
points P(2-3) and Q(10, y) is 10 unit.​

Answers

Answered by sandipdgkp
5

HOPE YOU LIKE THIS AND MARK MY ANSWER AS BRAINLIEST ANSWER

Attachments:
Answered by Anonymous
1

Step-by-step explanation:

AnswEr

  • The Distance between the points P(2,-3) and Q(10,Y) is 10 units.

  • We've to find out the value of y.

Using Distance Formula,

\dag \ \boxed{\sf{\pink{Distance = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}}}

Where,

\sf{Values}\begin{cases}\sf{x_1 = 2}\\\sf{x_2 = 10}\\\sf{y_1 = -3}\\\sf{y_2 = \ 'y'}\end{cases}

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━⠀⠀

\\

• Substituting values :

:\implies\sf\purple{\sqrt{\Big( x_2 - x_1 \Big)^2 + \Big(y_2 - y_1 \Big)^2}} \\\\\\:\implies\sf \sqrt{\Big( 10 - 2 \Big)^2 + \Big( y + 3 \Big)^2} = 10  \\\\\\:\implies\sf  \sqrt{\Big( 8 \Big)^2 + \Big( y + 3 \Big)^2} = 10

\\

• Squaring Both sides

:\implies\sf 64 + \Big( y + 3 \Big)^2 = 100 \\\\\\:\implies\sf \Big(y + 3 \Big)^2 = 100 - 64 \\\\\\:\implies\sf  \Big( y + 3 \Big)^2 = 36 \\\\\\:\implies\sf\pink{ y + 3 = \pm 6}  \\\\\\:\implies\sf y + 3 = 6\\\\\\:\implies\sf y = 6 - 3\\\\\\:\implies\boxed{\frak{\pink{ y = 3}}}\\\\\\:\implies\sf y + 3 = - 6\\\\\\:\implies\sf y = - 6 - 3\\\\\\:\implies\boxed{\frak{\pink{y = -9}}}

\therefore\underline{\textsf{ Hence, value of y is  \textbf{3 or -9}}}.\\

Similar questions