Math, asked by FavoriteBrainly, 8 months ago

Find the value of y for which the distance between the points P(2, –3) and Q(10, y) is 10 units. (Class 10th)​

Answers

Answered by Uriyella
23
  • Value of y = –9 and 3.

Given :–

  • Two points, P(2, –3) and Q(10, y).
  • PQ = 10 units.

To Find :–

  • Value of y.

Solution :–

We know that,

 \tt{\blue {\boxed{\red{Distance =  \sqrt{{( x_{2} - x_{1})}^{2} {( y_{2}  -y_{1})} ^{2} } }}}}

According to the question,

\longmapsto\sqrt{{( x_{2} - x_{1})}^{2} {( y_{2}  -y_{1})} ^{2} } = PQ

Here,

  •  x_{1} = 2
  •  x_{2} = 10
  •  y_{1} = -3
  •  y_{2} = y
  • PQ = 10.

Now, substitute all the values in the distance formula.

\longmapsto\sqrt{ {(10 - 2)}^{2} {(y - ( - 3))}^{2}  }  = 10

\longmapsto\sqrt{ {(8)}^{2}  +  {(y + 3)}^{2} }  = 10

Squaring both sides,

\longmapsto({{\sqrt{ {(8)}^{2}  + {(y + 3)}^{2} }}})^{2}  =  {(10)}^{2}

Square root cuts the power.

Now, we have

\longmapsto{(8)}^{2}  +  {(y + 3)}^{2}  = 100

Apply identity,

 \longmapsto {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}

So,

\longmapsto 64 +  {(y)}^{2}  + 2(y)(3) +  {(3)}^{2}  = 100

\longmapsto 64 +  {y}^{2}  + 6y + 9 = 100

\longmapsto{y}^{2}  + 6y + 73 = 100

\longmapsto{y}^{2}  + 6y + 73 - 100 = 0

  \longmapsto {y}^{2}  + 6y - 27 = 0

Splitting the middle term.

\longmapsto{y}^{2}  + 9y - 3y - 27 = 0

 \longmapsto y(y + 9) - 3(y + 9) = 0

\longmapsto(y + 9)(y - 3) = 0

 \longmapsto y + 9 = 0 or  y - 3 = 0

 \longmapsto y = -9 or  y = 3

Hence,

The value of y is –9 and 3.


Vamprixussa: Splendid !
Answered by Anonymous
6

Given ,

The distance between the points P(2, –3) and Q(10, y) is 10 units

We know that , the distance between two points is given by

 \boxed{ \tt{Distance =  \sqrt{ {( x_{2} - x_{1}   )}^{2} +  {(y_{2} - y_{1})}^{2}  } }}

Thus ,

 \tt \hookrightarrow 10 =  \sqrt{ {(10 - 2)}^{2}  +  {(y  + 3)}^{2} }

Squaring on both sides , we get

\tt \hookrightarrow100 = 64 +  {(y)}^{2}  + 9 + 6y

 \tt \hookrightarrow {(y)}^{2} + 6y - 27 = 0

 \tt \hookrightarrow{(y)}^{2}  - 9y + 3y - 27 = 0

\tt \hookrightarrow y(y - 9) + 3(y - 9) = 0

\tt \hookrightarrow(y + 3)(y - 9) = 0

\tt \hookrightarrow y =  - 3 \:  \: or \:  \: y = 9

Hence ,

  • Value of of y is either -3 or 9


Vamprixussa: Nice !
Similar questions