Math, asked by ms8688353, 3 months ago

Find the value of y for which the distance between the points P (2,-3) and Q(10,y) is 10 units.​

Answers

Answered by Anonymous
15

Given :-

  • Distance between P(2, -3) and Q(10,y) is 10units

To find :-

  • Value of y

Formula to know:-

Distance formula:-

\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

Solution:-

P = (2, -3)

{x_1 =2}

{y_1 = -3}

Q = (10,y )

{x_2 = 10}

{y_2 = y}

PQ = 10

\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}= 10

 \sqrt{(2 - 10) {}^{2} + (3 - y) {}^{2}  }  = 10

Squaring on both sides

( \sqrt{(2 - 10) {}^{2} + (3 - y) {}^{2}  } ) {}^{2}  = (10) {}^{2}

(2 - 10) {}^{2}  + (3 - y) {}^{2}  = 100

( - 8) {}^{2}  + (3 - y) {}^{2}  = 100

64 + (3 - y) {}^{2}  = 100

(3 - y) {}^{2}  = 100 - 64

(3 - y) {}^{2}  = (6) {}^{2}

3 - y = ±6

3 - y = 6

y =  - 3

3 - y =  - 6

y = 9

So, the value of y is -3 or 9

Know more :-

Mid point formula:-

\dfrac{x_1+x_2}{2} , \dfrac{y_1+y_2}{2}

Centroid formula:-

\dfrac{x_1+x_2+x_3}{3},\dfrac{y_1+y_2+y_3}{3}

Section formula Internal

division

\dfrac{mx_2+nx_1}{m+n}, \dfrac{my_2+ny_1}{m+n}

Section formula External division

\dfrac{mx_2-nx_1}{m-n}, \dfrac{my_2-ny_1}{m-n}

Similar questions
Math, 3 months ago