Math, asked by khushi15686, 19 days ago

Find the value of y from the following

lim \: x \to \:  - y \:  \frac{ {x}^{9}  +  {y}^{9} }{x + y}  = 9

Answers

Answered by mathdude500
32

\large\underline{\sf{Solution-}}

Given expression is

\rm \:  \:  \: \displaystyle\lim_{x  \: \to \:  -  \:  y}\rm  \frac{ {x}^{9}  +  {y}^{9} }{x + y} = 9

can be rewritten as

\rm \:   \: \displaystyle\lim_{x  \: \to \:  -  \:  y}\rm  \frac{ {x}^{9}  -   {( - y)}^{9} }{x - ( - y)} = 9

We know,

\boxed{\tt{  \:  \: \displaystyle\lim_{x \to a}\rm  \frac{ {x}^{n} -  {a}^{n}  }{x - a}  \:  =  \:  {na}^{n - 1} \:  \: }} \\

So, using this result, we get

\rm \:  \:  \: 9 {( - y)}^{9 - 1}  = 9

\rm \:  \:  \: {( - y)}^{8}  = 1

\rm\implies \: {y}^{8}  = 1

\rm\implies \:y  \:  =  \:  \pm \: 1

ALTERNATIVE METHOD

Given expression is

\rm \:  \:  \: \displaystyle\lim_{x  \: \to \:  -  \:  y}\rm  \frac{ {x}^{9}  +  {y}^{9} }{x + y} = 9

If we substitute directly x = - y, we get

\rm \:  \: \dfrac{ { - y}^{9}  +  {y}^{9} }{ - y + y}  = 9

\rm \:  \:  \: \dfrac{0}{0}  = 9

which is indeterminant form.

Now,

\rm \:  \:  \: \displaystyle\lim_{x  \: \to \:  -  \:  y}\rm  \frac{ {x}^{9}  +  {y}^{9} }{x + y} = 9

So, Using L - Hospital Rule, we have

\rm \:  \:  \: \displaystyle\lim_{x  \: \to \:  -  \:  y}\rm  \:  \frac{\dfrac{d}{dx} {x}^{9}  +  \dfrac{d}{dx}{y}^{9} }{\dfrac{d}{dx}x + \dfrac{d}{dx}y} = 9   \\

We know,

\boxed{\tt{ \dfrac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1} \: }} \\

and

\boxed{\tt{ \dfrac{d}{dx}k \:  =  \:  0 \: }} \\

So, using these results, we get

\rm \:  \: \displaystyle\lim_{x \:  \to \:   - y}\rm  \frac{ {9x}^{9 - 1}  + 0}{1 + 0}  = 9

\rm \:  \: \displaystyle\lim_{x \:  \to \:   - y}\rm  \frac{ {9x}^{8}}{1}  = 9

\rm \:  \:  \:  {9( - y)}^{8} = 9

\rm\implies \: {y}^{8}  = 1

\rm\implies \:y  \:  =  \:  \pm \: 1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\rm \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \:  \frac{sinx}{x} \:  =  \: 1

\rm \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \:  \frac{tanx}{x} \:  =  \: 1

\rm \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \:  \frac{log(1 + x)}{x} \:  =  \: 1

\rm \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \:  \frac{ {e}^{x}  - 1}{x} \:  =  \: 1

\rm \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \:  \frac{ {a}^{x}  - 1}{x} \:  =  \: loga

Answered by jaswasri2006
19

 \rm  the \:  \:  value \:  \:  of \:  \: y \:  \: in \:  \: \boxed{  \rm\lim_{x \to  - y} \:  \frac{ {x}^{9}  +  {y}^{9} }{x + y}  = 9} \:  \: is \:  \:   \orange{\bf \pm 1}

Attachments:
Similar questions