Math, asked by Gurpreethcy, 11 months ago

Find the value of y if 2+y√3=√3-1÷√3+1


Gurpreethcy: Do fast plz

Answers

Answered by LovelyG
9

Answer:

\large{\underline{\boxed{\sf y = - 1}}}

Step-by-step explanation:

Given that ;

 \sf 2 + y \sqrt{3}  =  \dfrac{ \sqrt{3}  - 1}{ \sqrt{3}  + 1}

Consider RHS first ;

 \sf  \frac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 }  \\  \\ \sf  \frac{ \sqrt{3} - 1 }{ \sqrt{3} +1} \times  \frac{ \sqrt{3}  - 1}{ \sqrt{3}- 1}  \\  \\ \sf  \frac{( \sqrt{3} - 1) {}^{2}  } {( \sqrt{3}) {}^{2}  - (1) {}^{2}  }  \\\\ \sf  \frac{3 + 1 - 2 \sqrt{3} }{3 - 1}  \\  \\ \sf  \frac{4 - 2 \sqrt{3} }{2}  \\  \\ \sf  \frac{2(2 -  \sqrt{3} )}{2}  \\  \\ \sf 2 - \sqrt{3}

On comparing the RHS with LHS,

 \sf 2 + y \sqrt{3}  = 2-  \sqrt{3}

We get that, y = - 1.

Hence, the value of y is - 1.


mihigpta: Sorry your answer is wrong, you have taken the reciprocal after considering RHS first
LovelyG: Please check once clearly, it is right.
mihigpta: Sorry I just misunderstood something...extremely sorry
Answered by mihigpta
1
The answer is -1.
By rationalisation
Mark brainliest if satisfied
Attachments:
Similar questions