Math, asked by jtamboli1234, 8 months ago

find the value of y if the distance between point on the Y-axis which is equidistant from AB²=[(-1)-2]² +[y-(-2)]²... ........... 5²=(-3)²+ ............. 25= ................​

Answers

Answered by smriteemakhija
0

Answer:

Step-by-step explanation:  

We know that the distance between the two points (x1 , y1  ) and (x2, y2 ) is

d = (x^2  −x^1 )^2  +(y^2 −y^1 )^2

 

​Let the given points be A=(5,2) and B=(−4,3) and let the point on y-axis be P(0,y).

We first find the distance between P(0,y) and A=(5,2) as follows:

PA= (x2 −x1 )2+(y2−y1  )2 =(5−0)  2 +(2−y)  2  =52 +(2−y)  2

 

​  

=  

25+(2−y)  

2

 

​  

 

Similarly, the distance between P(0,y) and B=(−4,3) is:

PB=  

(x  

2

​  

−x  

1

​  

)  

2

+(y  

2

​  

−y  

1

​  

)  

2

 

​  

=  

(−4−0)  

2

+(3−y)  

2

 

​  

=  

(−4)  

2

+(3−y)  

2

 

​  

=  

16+(3−y)  

2

 

​  

   

Since the point P(0,y) is equidistant from the points A=(5,2) and B=(−4,3), therefore, PA=PB that is:

25+(2−y)  

2

 

​  

=  

16+(3−y)  

2

 

​  

 

⇒(  

25+(2−y)  

2

 

​  

)  

2

=(  

16+(3−y)  

2

 

​  

)  

2

 

⇒25+(2−y)  

2

=16+(3−y)  

2

 

⇒(2−y)  

2

−(3−y)  

2

=16−25

⇒(4+y  

2

−4y)−(9+y  

2

−6y)=−9(∵(a−b)  

2

=a  

2

+b  

2

−2ab)

⇒4+y  

2

−4y−9−y  

2

+6y=−9

⇒2y−5=−9

⇒2y=−9+5

⇒2y=−4

⇒y=  

2

−4

​  

=−2

Hence, the point on the y-axis is (0,−2).

Similar questions