Math, asked by saisimirith, 6 months ago

find the value of y in the figure​

Attachments:

Answers

Answered by Anonymous
46

the point where all lines intersect, consider it as O.

\large\rm { \angle} COE = \large\rm { \angle} FOD { Vertically Opposite angles}

So, \large\rm { \angle } FOD = 30°

Now, \large\rm { \angle } AOF + \large\rm { \angle } FOD + \large\rm { \angle } DOB = 180°

Therefore, 90°+30°+3y = 180°

120°+3y=180°

3y = 180°-120°

3y = 120°

y = 120°/3

y = 40°

Answered by DangerousBomb
8

Answer:-

the point where all lines intersect, consider it as O.

\large\rm { \angle}∠ COE = \large\rm { \angle}∠ FOD { Vertically Opposite angles}

So, \large\rm { \angle }∠ FOD = 30°

Now, \large\rm { \angle }∠ AOF + \large\rm { \angle }∠ FOD + \large\rm { \angle }∠ DOB = 180°

Therefore, 90°+30°+3y = 180°

120°+3y=180°

3y = 180°-120°

3y = 120°

y = 120°/3

y = 40°

Similar questions