find the value of y in the following figure
Answers
Answer:
a. y = 180-(45+55)
= 180- 100
= 80
b. 104= y+y
104 =2y
52 = y
pls mark as brainliest
The value of y in figure a.) is 80°, and the value of y in figure b.) is 52°
Step-by-step explanation:
Given:
In figure a. & ΔABC, ∠A= y, ∠B= 45°, ∠C= 55°
In figure b. & ΔPQR, ∠RQP= y, ∠RPQ=y, exterior angle QRS= 104°
To find:
value of y in both the figures
Solution:
For figure a.)
In ΔABC,
∠A= y, ∠B= 45°, ∠C= 55°............(given)
∴ ∠A+∠B +∠C = 180°......(angle addition property)
∴ y + 45°+ 55°= 180°
∴ y+ 100°= 180°
∴ y = 180°-100°
∴ y = 80°
∴ ∠A = 80°
Thus the value of y for figure a.) is 80°
For figure b.)
In ΔPQR, ∠QRS is an exterior angle of the triangle
∠RQP= y, ∠RPQ=y, exterior angle QRS= 104°......(given)
Now, ∠QRS= ∠P+∠Q....(exterior angle theorem)
∴ 104°= y +y
∴ 104°= 2y
∴ 2y = 104°
∴ y= 104/2
∴ y = 52°
∴ ∠P = ∠Q= 52°
Thus, the measure or value for y in figure b.) is 52°
#SPJ3