Math, asked by SharmaShivam, 1 year ago

Find the value of y.
y=\sqrt{log_2\:3.log_2\:12.log_2\:48.log_2\:192+16}-log_2\:12.log_2\:48+10

Answers

Answered by Swarup1998
15
\underline{\text{Solution :}}

\star \mathrm{log_{2}3=\frac{log_{e}3}{log_{e}2}=\frac{ln3}{ln2}}

\star \mathrm{log_{2}12=\frac{log_{e}12}{log_{e}2}=\frac{ln12}{ln2}=\frac{ln3+2ln2}{ln2}=\frac{ln3}{ln2}+2}

\star \mathrm{log_{2}48=\frac{log_{e}48}{log_{e}2}=\frac{ln48}{ln2}=\frac{ln3+4ln2}{ln2}=\frac{ln3}{ln2}+4}

\star \mathrm{log_{2}192=\frac{log_{e}192}{log_{e}2}=\frac{ln192}{ln2}=\frac{ln3+6ln2}{ln2}=\frac{ln3}{ln2}+6}

\mathrm{We\:consider\to \:\frac{ln3}{ln2}=x}

\boxed{\star}\mathrm{log_{2}3\times log_{2}12\times log_{2}48\times log_{2}192+16}

\mathrm{=\frac{ln3}{ln2}(\frac{ln3}{ln2}+2)(\frac{ln3}{ln2}+4)(\frac{ln3}{ln2}+6)+16}

\mathrm{=x(x+2)(x+4)(x+6)+16,\:since\:\frac{ln3}{ln2}=x}

\mathrm{=x(x+2)(x^{2}+10x+24)+16}

\mathrm{=x(x^{3}+12x^{2}+44x+48)+16}

\mathrm{=x^{4}+12x^{3}+44x^{2}+48x+16}

\mathrm{=x^{4}+36x^{2}+16+12x^{3}+8x^{2}+48x}

\mathrm{=(x^{2}+6x+4)^{2}}

\mathrm{Also,\:log_{2}12\times log_{2}48}

\mathrm{=\frac{log_{e}12}{log_{e}2}\times \frac{log_{e}48}{log_{e}2}}

\mathrm{=\frac{ln12}{ln2}\times \frac{ln48}{ln2}}

\mathrm{=\frac{ln3+2ln2}{ln2}\times \frac{ln3+4ln2}{ln2}}

\mathrm{=(\frac{ln3}{ln2}+2)(\frac{ln3}{ln2}+4)}

\mathrm{=(x+2)(x+4),\:since\:\frac{ln3}{ln2}=x}

\mathrm{=(x^{2}+6x+8)}

\therefore \mathrm{\sqrt{(log_{2}3\times log_{2}12\times log_{2}48\times log_{2}192)+16}-(log_{2}12\times log_{2}48)+10}

\mathrm{=\sqrt{(x^{2}+6x+4)^{2}}-(x^{2}+6x+8)+10}

\mathrm{=x^{2}+6x+4-x^{2}-6x-8+10}

\mathrm{=6}

\to \boxed{\mathrm{\sqrt{(log_{2}3\times log_{2}12\times log_{2}48\times log_{2}192)+16}-(log_{2}12\times log_{2}48)+10=6}}
Answered by wwwseenalingampalli
0

Answer:

hope it is helpful to you...

Attachments:
Similar questions