Math, asked by bhumisaini581, 4 months ago

Find the value of z , y , z in the diagram .
No spam otherwise I will report that question .
Ok ​

Attachments:

Answers

Answered by ajinkyaharsh137
2

Step-by-step explanation:

this is your answer in the above picture.

Attachments:
Answered by Anonymous
16

Given:

  • ∠AOE = z
  • ∠EOB = y
  • ∠BOD = x
  • ∠DOC = 90°
  • ∠COA = 2x

Find:

  • Value of x, y and z

Solution:-

In line segment AB

\sf \to\angle AOC +\angle DOC + \angle DOB = 180^{\circ}\quad\bigg\lgroup Linear\:Pair\bigg\rgroup \\

\sf where  \small{\begin{cases}   \sf\angle AOC  = 2x \\  \sf\angle DOC  =  {90}^{ \circ}  \\  \sf\angle DOB = x\end{cases}}

\bigstar Substituting these values:-

\sf \implies\angle AOC +\angle DOC + \angle DOB = 180^{\circ} \\  \\

\sf \implies 2x +90+ x = 180\\  \\

\sf \implies 3x +90 = 180\\  \\

\sf \implies 3x= 180 - 90\\  \\

\sf \implies 3x=90\\  \\

\sf \implies x= \dfrac{90}{3}\\  \\

\sf \implies x= {30}^{ \circ}\\  \\

 \underline{\boxed{ \sf\therefore Value\:of\:x\:is\:30^{\circ}}}

Now,

\sf \to \angle AOC  = \angle EOB\quad\bigg\lgroup Vertical\:Opposite\: Angles\bigg\rgroup \\

\sf where  \small{\begin{cases}   \sf\angle AOC  =2x \\  \sf \angle EOB = y \\  \sf x =  {30}^{ \circ} \end{cases}}

\bigstar Substituting these values:-

\sf \implies\angle AOC  = \angle EOB \\  \\

\sf \implies 2x  = y \\  \\

\sf \implies 2(30) = y \\  \\

\sf \implies 60^{ \circ} = y \\  \\

 \underline{\boxed{ \sf\therefore Value\:of \: y\:is\:60^{\circ}}}

In line segment AB

\sf \to\angle AOE + \angle EOB = 180^{\circ}\quad\bigg\lgroup Linear\:Pair\bigg\rgroup \\

\sf where  \small{\begin{cases}   \sf\angle AOE  =  z\\  \sf\angle EOB = y \\  \sf y =  {60}^{ \circ} \end{cases}}

\bigstar Substituting these values:-

\sf \implies\angle AOE + \angle EOB = 180^{\circ} \\  \\

\sf \implies z+y = 180\\  \\

\sf \implies z+60 = 180\\  \\

\sf \implies z= 180 - 60 \\  \\

\sf \implies z= 120^{ \circ}  \\  \\

 \underline{\boxed{ \sf\therefore Value\:of \: z\:is\:120^{\circ}}}

Attachments:
Similar questions