Math, asked by anjaliarchana29, 9 months ago

Find the value ofsl theta in each of the following. Theta is an acute angle. I) 3sec2theta=2√3​

Answers

Answered by RISH4BH
153

\large{\underline{\underline{\red{\sf{Given:}}}}}

  • \tt{\theta\:is\:a\:acute\:angle\:.}
  • \tt{3\sec 2\theta=2\sqrt{3}.}

\large{\underline{\underline{\red{\sf{To\: Find:}}}}}

  • \tt{The\:value\:of\:\theta.}

\large{\underline{\underline{\red{\sf{Answer:}}}}}

\tt{Given\: that\:\theta\:is\:a\:acute\: angle.}\tt{This\:means\:\theta\:lies\:in\:first\: quadrant.}

\purple{\bf{Taking\:the\:given\:equ^{n}}}

\tt{:\implies  3\sec2\theta=2\sqrt{3}}

\tt{:\implies \sec2\theta=\dfrac{2\sqrt{3}}{3}}

\tt{:\implies \sec2\theta= \dfrac{2\cancel{\sqrt{3}}}{\cancel{\sqrt{3}}\times\sqrt{3}}}

\tt{:\implies \sec2\theta=\dfrac{2}{\sqrt{3}}}

\tt{:\implies \sec2\theta=\sec30^{\circ}}

\tt{:\implies 2\theta=30^{\circ}}

\tt{:\implies \theta=\dfrac{1}{2}\times 30^{\circ}}

\underline{\boxed{\green{\tt{\dag \theta =15^{\circ}}}}}

\underline{\pink{\tt{Hence\:value\:of\:\theta\:is\:15^{\circ}}}}

Similar questions