Find the value ofx^3-(1/x^3) when x-(1/x)=a
Answers
Answered by
1
Answer:
Step-by-step explanation:
X^3 – 1/x^3 =?
So using here (a – b)^3 = a^3 - b^3 -3a^2 b -3ab^2
(x-1/x)^3 = x^3 – 1/x^3 - 3(x)^2 1/x – 3x(1/x)^2
(x-1/x)^3 = x^3 – 1/x^3 - 3(x)^2 1/x – 3x1/x^2
(x-1/x)^3 = x^3 – 1/x^3 - 3x( 1) – 3(1/x) ………………. @
We know value of x-1/x=a
So , from step @
(a)^3 = x^3 – 1/x^3 - 3x – 3(1/x)
(a)^3 = x^3 – 1/x^3 - 3(x-1/x)……………(taking 3 common)
(a)^3 = x^3 – 1/x^3 - 3a
(a)^3 +3a = x^3 – 1/x^3
So x^3 – 1/x^3 = (a)^3 +3a
Similar questions