Math, asked by jinglejaya704, 1 year ago

Find the value or range of value of m if:-
the vector 2i(cap) - mj(cap) +3mk(cap) and (1+m)i(cap) -2mj(cap) +k(cap) include an acute angle

Answers

Answered by MaheswariS
7

Answer:

The range of m is

\bf\,(-\infty,-2)\cup(\frac{-1}{2},\infty)

Step-by-step explanation:

\text{Concept:}

\text{The angle between the vectors }\overrightarrow{a}\text{ and }\overrightarrow{b}\text{ is }

\bf\,cos\theta=\frac{\overrightarrow{a}.\overrightarrow{b}}{|\overrightarrow{a}|\,|\overrightarrow{b}|}

\text{Let}

\overrightarrow{a}=2\overrightarrow{i}-m\overrightarrow{j}+3m\overrightarrow{k}

\overrightarrow{b}=(1+m)\overrightarrow{i}-2m\overrightarrow{j}+\overrightarrow{k}

\text{since }\theta\text{ is acute, }cos\theta>0

\implies\overrightarrow{a}.\overrightarrow{b}>0

\implies\,2(1+m)+2m^2+3m>0

\implies\,2+2m+2m^2+3m>0

\implies\,2m^2+5m+2>0

\implies\,(2m+1)(m+2)>0

\implies\bf\,m\in\,(-\infty,-2)\cup(\frac{-1}{2},\infty)

Answered by guptasingh4564
0

The value of m is -2 or -\frac{1}{2}

Step-by-step explanation:

Given,

Lets take two vector,

\overrightarrow a=2\overrightarrow i-m\overrightarrow j+3m\overrightarrow k and \overrightarrow b=(1+m)\overrightarrow i-2m\overrightarrow j+\overrightarrow k

The angle between angle \overrightarrow a\ and\ \overrightarrow b is given,

Cos\theta=\frac{\overrightarrow a.\overrightarrow b}{\left | \overrightarrow a \right | \left | \overrightarrow b \right |}

Since, Cos\theta >0

\overrightarrow a.\overrightarrow b >0

2(1+m)+2m^{2} +3m>0

2+2m+2m^{2}+3m>0

2m^{2}+5m+2>0

(2m+1)(m+2)>0

m=-2,-\frac{1}{2}

So, The value of m is -2 or -\frac{1}{2}

Similar questions