Find the value(s) of 'a' so that f(x) is continuous at x = 2, where; f(x) = ax-3 and x/a
Answers
Answered by
0
Answer:
A=1,2
Step-by-step explanation:
Given, f(x)={ax+3,a2x−1x≤2x>2
Continuity at x=2,
LHL=x→2−limf(x)=x→2lim(ax+3)=2a+3
RHL=x→2+limf(x)=x→2lim(a2x−1)=2a2−1
Since, f(x) is continuous for all values of x.
Therefore, LHL= RHL
⇒2a+3=2a2−1
⇒2a2−2a−4=0
⇒a2−a−2=0
⇒a2−2a+a−2=0
⇒a(a−2)+1(a−2)=0
⇒(a+1)(a−2)=0
⇒a=−1,2
Answered by
2
Answer:
ANSWER
A=1,2
Step-by-step explanation:
Given, f(x)={ax+3,a2x−1x≤2x>2
Continuity at x=2,
LHL=x→2−limf(x)=x→2lim(ax+3)=2a+3
RHL=x→2+limf(x)=x→2lim(a2x−1)=2a2−1
Since, f(x) is continuous for all values of x.
Therefore, LHL= RHL
⇒2a+3=2a2−1
⇒2a2−2a−4=0
⇒a2−a−2=0
⇒a2−2a+a−2=0
⇒a(a−2)+1(a−2)=0
⇒(a+1)(a−2)=0
⇒a=−1,2
Similar questions
Geography,
17 days ago
English,
17 days ago
CBSE BOARD X,
17 days ago
Hindi,
1 month ago
English,
9 months ago
Social Sciences,
9 months ago