English, asked by pintukumar44478, 11 months ago

Find the value (s) of k if the quadratic equation 3
- k 31+ 4 = 0 has real roots.
w
i
elefendine
em entende a right angle at the centre Find area of mind​

Answers

Answered by swarajnagesh
0

For k=0 roots are equal.

Step-by-step explanation:

Given : Quadratic equation (3k+1)x^2+2(k+1)x+1=0(3k+1)x

2

+2(k+1)x+1=0 has equal roots.

To find : The value of k and roots?

Solution :

The quadratic equation has equal roots when discriminant is zero.

i.e. \begin{lgathered}D=0\\b^2-4ac=0\end{lgathered}

D=0

b

2

−4ac=0

Where, a=3k+1 , b=2(k+1) and c=1

(2(k+1))^2-4(3k+1)(1)=0(2(k+1))

2

−4(3k+1)(1)=0

4(k^2+1+2k)-12k-4=04(k

2

+1+2k)−12k−4=0

4k^2+4+8k-12k-4=04k

2

+4+8k−12k−4=0

4k^2-4k=04k

2

−4k=0

4k(k-4)=04k(k−4)=0

k=0,4k=0,4

When k=0, The equation became x^2+2x+1=0x

2

+2x+1=0

The roots are

x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}x=

2a

−b±

b

2

−4ac

x=\frac{-2\pm\sqrt{2^2-4(1)(1)}}{2(1)}x=

2(1)

−2±

2

2

−4(1)(1)

x=\frac{-2\pm\sqrt{0}}{2}x=

2

−2±

0

x=\frac{-2}{2}=-1x=

2

−2

=−1

Roots are -1,-1.

When k=4, The equation became 13x^2+10x+1=013x

2

+10x+1=0

The roots are

x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}x=

2a

−b±

b

2

−4ac

x=\frac{-10\pm\sqrt{10^2-4(13)(1)}}{2(1)}x=

2(1)

−10±

10

2

−4(13)(1)

x=\frac{-10\pm\sqrt{48}}{26}x=

26

−10±

48

x=\frac{-10\pm4\sqrt{3}}{26}x=

26

−10±4

3

x=\frac{-10+4\sqrt{3}}{26},\frac{-10-4\sqrt{3}}{26}x=

26

−10+4

3

,

26

−10−4

3

x=\frac{-5+2\sqrt{3}}{13},\frac{-5-2\sqrt{3}}{13}x=

13

−5+2

3

,

13

−5−2

3

Roots are \frac{-5+2\sqrt{3}}{13},\frac{-5-2\sqrt{3}}{13}

13

−5+2

3

,

13

−5−2

3

not equal.

So, For k=0 roots are equal.

Similar questions