Math, asked by papafairy143, 6 hours ago

Find the value(s) of x using factorization method

 {x}+  \frac{1}{x}  = 25 \frac{1}{25}

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:x + \dfrac{1}{x} = 25\dfrac{1}{25}

can be rewritten as

\rm :\longmapsto\:\dfrac{ {x}^{2} +  1}{x} = 25 + \dfrac{1}{25}

\rm :\longmapsto\: {x}^{2} + 1 = 25x + \dfrac{x}{25}

\rm :\longmapsto\: {x}^{2} - 25x -  \dfrac{x}{25}  +  \red{1} = 0

can be further rewritten as

\rm :\longmapsto\: {x}^{2} - 25x -  \dfrac{x}{25}  +  \red{\dfrac{25}{25}}  = 0

\rm :\longmapsto\:x(x - 25) - \dfrac{1}{25}(x - 25) = 0

\rm :\longmapsto\:(x - 25)\bigg(x - \dfrac{1}{25} \bigg)  = 0

 \\ \bf\implies \:\boxed{\bf{ x = 25 \:  \: or \:  \: x = \dfrac{1}{25} }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

SHORT CUT TRICK

☆ If the equation is of the form

\rm :\longmapsto\:x + \dfrac{1}{x} = a\dfrac{1}{a} \: then \:  \\  \red{\rm\implies \:x = a \:  \: or \: x =  \dfrac{1}{a} }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Answered by OoAryanKingoO78
0

Answer:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:x + \dfrac{1}{x} = 25\dfrac{1}{25}

can be rewritten as

\rm :\longmapsto\:\dfrac{ {x}^{2} +  1}{x} = 25 + \dfrac{1}{25}

\rm :\longmapsto\: {x}^{2} + 1 = 25x + \dfrac{x}{25}

\rm :\longmapsto\: {x}^{2} - 25x -  \dfrac{x}{25}  +  \red{1} = 0

can be further rewritten as

\rm :\longmapsto\: {x}^{2} - 25x -  \dfrac{x}{25}  +  \red{\dfrac{25}{25}}  = 0

\rm :\longmapsto\:x(x - 25) - \dfrac{1}{25}(x - 25) = 0

\rm :\longmapsto\:(x - 25)\bigg(x - \dfrac{1}{25} \bigg)  = 0

 \\ \bf\implies \:\boxed{\bf{ x = 25 \:  \: or \:  \: x = \dfrac{1}{25} }} \\

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

SHORT CUT TRICK

☆ If the equation is of the form

\rm :\longmapsto\:x + \dfrac{1}{x} = a\dfrac{1}{a} \: then \:  \\  \red{\rm\implies \:x = a \:  \: or \: x =  \dfrac{1}{a} }

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

Similar questions