Math, asked by Ashrithreddykura, 1 year ago

Find the value sin 330.cos 120+cos 210. sin 300
 \sin(330) \cos(120)  +  \cos(210)  \sin(300)

Answers

Answered by Pitymys
7

We know,

 \sin (330^o)=\sin (360^o-30^o)=\sin (-30^o)=-\sin (30^o)=-\frac{1}{2} \\<br />\cos (120^o)=\cos (180^o-60^o)=-\cos (60^o)=-\frac{1}{2} \\<br />\cos (210^o)=\cos (180^o+30^o)=-\cos (30^o)=-\frac{\sqrt{3}}{2} \\ <br />\sin (300^o)=\sin (360^o-60^o)=\sin (-60^o)=-\sin (60^o)=-\frac{\sqrt{3}}{2}

Plug in the above values in the given expression.

So the given expression is

 \sin (330^o)\cos (120^o)+\cos (210^o)\sin (300^o)=(-\frac{1}{2})^2 +(-\frac{\sqrt{3}}{2})^2\\<br />\sin (330^o)\cos (120^o)+\cos (210^o)\sin (300^o)=\frac{1+3}{4}=1<br />

Similar questions