Math, asked by pravx2386, 1 year ago

Find the value.
Sin100.sin120.sin140.sin160

Answers

Answered by timirbarankamley2803
4

Answer:

the value of sin100.sin160.sin140.sin200 is o.o7311

Answered by MaheswariS
6

\textbf{Given:}

sin\,100^{\circ}\;sin\,120^{\circ}\;sin\,140^{\circ}\;sin\,160^{\circ}

\bf\,sin\,100^{\circ}=sin(90^{\circ}+10^{\circ})=cos\,10^{\circ}

\bf\,sin\,120^{\circ}=sin(90^{\circ}+30^{\circ})=cos\,30^{\circ}=\frac{\sqrt3}{2}

\bf\,sin\,140^{\circ}=sin(90^{\circ}+50^{\circ})=cos\,50^{\circ}

\bf\,sin\,160^{\circ}=sin(90^{\circ}+70^{\circ})=cos\,70^{\circ}

\text{Now,}

sin\,100^{\circ}\;sin\,120^{\circ}\;sin\,140^{\circ}\;sin\,160^{\circ}

=cos\,10^{\circ}(\frac{\sqrt3}{2})cos\,50^{\circ}\;cos\,70^{\circ}

=\frac{\sqrt3}{2}[cos\,50^{\circ}cos\,10^{\circ}\;cos\,70^{\circ}]

=\frac{\sqrt3}{2}[cos\,(60^{\circ}-10^{\circ})cos\,10^{\circ}\;cos\,(60^{\circ}+10^{\circ})]

\text{We know that,}

\boxed{\bf\,cos(60-A)\;cosA\;cos(60+A)=\frac{1}{4}cos\,3A}}

=\frac{\sqrt3}{2}[\frac{1}{4}cos3(10^{\circ})]

=\frac{\sqrt3}{2}[\frac{1}{4}cos30^{\circ}]

=\frac{\sqrt3}{2}[\frac{1}{4}\frac{\sqrt3}{2}]

=\frac{3}{16}

\therefore\bf\,sin\,100^{\circ}\;sin\,120^{\circ}\;sin\,140^{\circ}\;sin\,160^{\circ}=\frac{3}{16}

Find more:

PROVE THAT:

cos 12 cos 24 cos 36 cos 48 Cos 60 cos 72 cos 84 equal = 1 / 128​

https://brainly.in/question/9849513

Prove that : 8 sin 20 sin 40 sin 80 = (3)^1/2

https://brainly.in/question/2394832

Similar questions