Find the value:
Sin5π/12
Tan7π/12.
Answers
Answered by
1
we have to find the value of sin(5π/12) and tan(7π/12)
in degree, 5π/12 => 75° and 7π/12 = 105°
means, we have to find sin75° and tan105°
sin(75°) = sin(30° + 45°)
use formula, sin(A + B) = sinA.cosB + cosA.sinB
then, sin(30° + 45°) = sin30°.cos45° + cos30°.sin45°
= 1/2 × 1/√2 + √3/2 × 1/√2
= (√3 + 1)/2√2
hence, sin(75°) = sin(5π/12) = (√3 + 1)/2√2
again, tan(7π/12) = tan(105°)
= tan(180° - 75°)
= -tan(75°)
= - tan(30° + 45°)
use formula, tan(A + B) = (tanA + tanB)/(1 - tanA.tanB)
so, -tan(30° + 45°) = -(tan30° + tan45°)/(1 - tan30° . tan45°)
= -(1/√3 + 1)/(1 - 1/√3 × 1)
= -(1 + √3)/(√3 - 1)
= -(1 + √3)²/(√3² - 1²)
= -(1 + 3 + 2√3)/2
= -(2 + √3)
hence, tan(105°) = tan(7π/12) = -(2 + √3)
Similar questions