Math, asked by fathimashifakp, 8 months ago

find the value:
tan^-1 [2cos(2sin^-1 1/2)]​

Answers

Answered by chinna6859294
8

Answer:

tan -1(2 cos (2sin^-11/2) =1(2 cos)^2 sin^11/2)=1+2+1+1+2=7

Answered by BrainlyKingdom
1
  • The most common convention is to name inverse trigonometric functions using an arc- prefix: arcsin(x), arccos(x), arctan(x), etc.

\sf{\arctan \left(2\cos \left(2\arcsin \left(\dfrac{1}{2}\right)\right)\right)}

\sf{\displaystyle=\arctan \left(2\left(-1+2\cos ^2\left(\arcsin \left(\frac{1}{2}\right)\right)\right)\right)}

\sf{\displaystyle=\arctan \left(2\left(-1+2\left(\sqrt{1-\left(\frac{1}{2}\right)^2}\right)^2\right)\right)}

\sf{\displaystyle=\arctan \left(2\left(\frac{3}{2}-1\right)\right)}=\arctan \left(2\cdot \frac{1}{2}\right)

\large\boxed{\sf{ =arctan \left(1\right)}}

Similar questions