Math, asked by vsgsyevd, 3 months ago

Find the value to three places of decimals √2+1/√5
It is given that √10 = 3.162 and √5 = 2.236​

Answers

Answered by Raftar62
1

Answer:

1.076

multiply  \: and \: divide \: by \: \frac{ \sqrt{2} - 1 }{ \sqrt{2}  - 1}. \\   \\   \implies{\frac{ \sqrt{2} + 1 }{ \sqrt{5} } \times  \frac{ \sqrt{2}   - 1}{ \sqrt{2}  - 1}}  \\  \\  \implies{\frac{  {(\sqrt{2})}^{2}   -   {1}^{2}  }{ \sqrt{5 \times 2}  -  \sqrt{5} }} \\  \\ \implies{\frac{2  -   1  }{ \sqrt{10}  -  \sqrt{5} }} \\  \\\implies{\frac{1}{ \sqrt{10}  -  \sqrt{5} }} \\  \\ putting \: given \: decimals \: in \: this \: fraction.then \\  \\  \implies{ \frac{1}{3.165 - 2.236}  =   \boxed{\frac{1}{0.929} = 1.076 \: .}}

Answered by Anonymous
21

Solution -

We have,

  • \sf{\dfrac{\sqrt{2} + 1}{\sqrt{5}}}

Firstly, we have to rationalise the denominator

\tt\dashrightarrow{\dfrac{\sqrt{2} + 1}{\sqrt{5}} \times \dfrac{\sqrt{5}}{\sqrt{5}}}

\tt\dashrightarrow{\dfrac{(\sqrt{2} + 1) \sqrt{5}}{\sqrt{5} \times \sqrt{5}}}

\tt\dashrightarrow{\dfrac{\sqrt{10} + \sqrt{5}}{5}}

From the given values, i.e.,

  • \sf{\sqrt{10} = 3.162}
  • \sf{\sqrt{5} = 2.236}

Putting the values

\tt\dashrightarrow{\dfrac{3.162 + 2.236}{5}}

\tt\dashrightarrow{\dfrac{5.398}{5}}

\bf\dashrightarrow{1.079}

Hence,

  • The required value is 1.079.

━━━━━━━━━━━━━━━━━━━━━━

Similar questions