Find the value using suitable identity
Answers
Answered by
3
9898
Step-by-step explanation:
101 x 98
( x + a ) ( x + b ) = x² + ( a + b ) x + ab
x= 100 , a= 1 ,b= -2
(100)²+ [ 1 + ( - 2 ) ] × 100 + 1 ( - 2 )
10000-100-2
9900-2
9898
Answered by
40
101×98
Solution -
- Using Identity - (x+α)(x+b) = x²+(α+b)x+ αb
_____________
Algebrαic identity - An αlgebrαic identity is αn equαlity thαt holds for αny vαlues of its vαriαbles.
There αre some αlgebrαic identities —
- (a+b)² = a² + 2ab + b²
- (a-b)² = a² - 2ab + b²
- a²-b² = (a-b)(a+b)
- a²+b² = (a+b)² - 2ab
- (x+a)(x+b) = x² + (a+b)x + ab
- (a+b)³ = a³ + b³ + 3ab(a+b)
- (a-b)³ = a³ - b³ - 3ab(a-b)
- a³+b³ = (a+b)³-3ab(a+b)
⠀⠀⠀⠀⠀⠀⠀= (a+b) (a²- ab + b²)
- a³-b³ = (a-b)³+3ab(a-b)
⠀⠀⠀⠀⠀⠀⠀= (a-b) (a² + ab + b²)
- (a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca
- (a-b-c)² = a² + b² + c² - 2ab + 2bc - 2ca
- (a-b+c)² = a² + b² + c² - 2ab - 2bc + 2ca
__________________________
Anonymous:
Just osmmm :)
Similar questions