find the value using suitable property a)97² b)101×96
ak4708321:
hi
Answers
Answered by
5
(a) (97)²
Solution -
- Using Identity — (α-b)² = α²- 2αb + b²
(b) 101 × 96
Solution -
- Using Identity - (x+α)(x+b) = x²+(α+b)x + αb
_______
Algebrαic identity - An αlgebrαic identity is αn equαlity thαt holds for αny vαlues of its vαriαbles.
e.g.,
- (a+b)² = a² + 2ab + b²
- (a-b)² = a² - 2ab + b²
- a²-b² = (a-b)(a+b)
- a²+b² = (a+b)² - 2ab
- (x+a)(x+b) = x² + (a+b)x + ab
- (a+b)³ = a³ + b³ + 3ab(a+b)
- (a-b)³ = a³ - b³ - 3ab(a-b)
- a³+b³ = (a+b)³-3ab(a+b)
⠀⠀⠀⠀⠀⠀⠀= (a+b) (a²- ab + b²)
- a³-b³ = (a-b)³+3ab(a-b)
⠀⠀⠀⠀⠀⠀⠀= (a-b) (a² + ab + b²)
- (a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca
- (a-b-c)² = a² + b² + c² - 2ab + 2bc - 2ca
- (a-b+c)² = a² + b² + c² - 2ab - 2bc + 2ca
__________________________
Answered by
69
A) (97)²
Identity:- (a-b)² = a²- 2ab + b²
__________________________________________
B) 101 × 96
Identity:- (x+a)(x+b) = x²+(a+b)x + ab
━━━━━━━━━━━━━━━━━━━━
Similar questions