Math, asked by TheDoom, 8 months ago

Find the value which satisfies the expression 4^x - 3.2^(x+3)+128 = 0

Answers

Answered by Anonymous
5

\huge\mathfrak\blue{Answer:}

Given:

  • We have been given an equation
  • \sf{4^x - 3.2^{x+3}+128}  = 0

To Find:

  • We have to find the values of x which satisfies the given equation

Solution:

We have been given an equation

\hookrightarrow \sf{4^x - 3(2^{x+3}) +128 = 0}

Using law of exponents

\boxed{\sf{\orange{a^{m+n} = a^m \times a^n}}}

\hookrightarrow \sf{4^x - 3(2^x)(2^3) + 128 = 0}

\hookrightarrow \sf{{(2^x)}^{2}-24(2^x)+ 128 = 0}

________________________________

\bigstar \: \: \underline{\LARGE\mathfrak\pink{Let \: us \: assume:}}

\boxed{\sf{\red{2^x = y }}} --------------( 1 )

Hence the equation becomes

\hookrightarrow \sf{ y^2 - 24y + 128 = 0}

Solving the equation using middle term splitting

\hookrightarrow \sf{y^2 - 16y - 8y + 128 = 0}

\hookrightarrow \sf{y( y - 16 ) - 8 ( y - 16 ) = 0}

\hookrightarrow \sf{(y - 16 ) ( y - 8 ) = 0}

Hence Either

\implies \sf{ y - 16 = 0 }

\implies \sf{y = 16}

Or

\implies \sf{ y - 8 = 0 }

\implies \sf{ y = 8 }

________________________________

Putting values of y in ( 1 )

1 ) When y = 16

\longrightarrow \sf{2^x = 16}

\longrightarrow \sf{2^x = 2^4}

Comparing the bases on both sides of equation

\longrightarrow \boxed{\sf{x = 4}}\\ \\

2 ) When y = 8

\longrightarrow \sf{2^x = 8}

\longrightarrow \sf{2^x = 2^3}

Comparing the bases on both sides of equation

\longrightarrow \boxed{\sf{ x = 3}}

\boxed{\sf{\red{Value \: of \: x = 3 \: or \: 4}}}

Hence value of x = 3 or x = 4 satisfies the given equation

________________________________

\huge\mathfrak\green{Verification:}\\

1 ) When x = 3

\implies \sf{4^3 - 3.2^{3+3}+128}

\implies \sf{64 - 3.2^6 + 128}

\implies \sf{192 - 3 \times 64}

\implies \sf{192 - 192 = 0 \: ( Answer ) } \\ \\

2 ) When x = 4

\implies \sf{4^4 - 3.2^{4+3} + 128 }

\implies \sf{256 - 3.2^7 + 128}

\implies \sf{384 - 3 \times 128}

\implies \sf{384 - 384 = 0 \: (Answer ) }

Hence Verified !!

Answered by Anonymous
4

Step-by-step explanation:

\huge\mathfrak\red{Answer}

Given Equation;

4x - 3( {2}^{x + 3}  + (128) = 0

Using law of exponents:

 {a}^{m + n}  =   {a}^{m}  \times  {a}^{n}

 =  > ( {2}^{2} ) ^{x}  - 3( {2}^{x} . {2}^{3}  + 128 = 0

 =  > ( {2}^{x} ) ^{2}  - 3( {2}^{x}. 8) + 128 = 0

let us assume that:

 {2}^{x}  = y

The Equation become

 {y}^{2}  - 24y + 128 = 0

Splitting middle term

 =  >  {y}^{2}  - 16y - 8y + 128 = 0

 =  > y(y - 16) - 8(y - 16) = 0

(y - 16)(y - 8) = 0

So, y=8 and you=16

when \: y = 8 =  >  {2}^{x}  =  {2}^{3} =  > x = 3

when \: y = 16 =  >  {2}^{x}  =  {2}^{4} =  > x = 4

Hence roots are 3 and 4 .

So, the sum of the roots =3+4=7

Similar questions