Math, asked by fayaaz58, 3 months ago

find the value with all steps​

Attachments:

Answers

Answered by harshitverma4167
1

Answer:

Cube root of (-343) = -7

Cube root of (-1331) = -11

= (-7)×(-11)

= 77

Answered by Anonymous
6

Required Solution :-

\sf :\implies^3\sqrt{(-343)\times (-1331)}

Write the interior terms of under-root in its prime factors.

\sf :\implies^3\sqrt{({\bf {-1}}\times  7  \times 7\times 7)\times ({\bf{-1}}\times 11\times 11\times 11)}

Here -1×-1 will become 1, then:

\sf :\implies^3\sqrt{(  7  \times 7\times 7)\times ( 11\times 11\times 11)}

Now making triplets:

\sf :\implies^3\sqrt{(  7  \times 11)\times (7\times11)\times  (7\times 11)}

Now removing cube root and add ⅓ as exponent:

\sf :\implies\Big[(  7  \times 11)\times (7\times11)\times  (7\times 11)\Big]^\dfrac{1}{3}

Now express inner terms of bracket in exponential form:

\sf :\implies\Big[(  7  \times 11)^3\Big]^\dfrac{1}{3}

Applying exponential rule:-

• (Aᵃ)ᵇ=Aᵃᵇ

So,

\sf :\implies\Big(  7  \times 11\Big)^\dfrac{1}{\bf 3}\times \Large {\bf 3}

\sf :\implies\Big(  7  \times 11\Big)^\dfrac{1}{\not 3}\times \Large {\not 3}

\sf :\implies\Big(\bf  7  \times 11\Big)

\sf\boxed{ :\implies 77}

So the required answer is 77.

Similar questions