find the value with complete explanation
Attachments:
Answers
Answered by
1
let
( a - b) = P , => ( b -a) = - P
(b - c) = q , => ( c - b) = -q
(c -a) = r , => ( a - c) = -r
hence,
P + q + r = (a - b) + ( b -c) + (c -a) =0
P + q + r = 0
so, question now , convert into
1/( 1+ x^-P + x^r) + 1/( 1+ x^p + x^-q) + 1/( 1+ x^q + x^-r )
now,
1/( 1+ 1/x^p + x^r) = x^p/{x^p + 1 + x^( p+r)}
= x^p/{ x^p + 1 + x^( -q)} { from P+r = -q}
= x^(p+q)/{ x^(P+q) +x^q + 1 }
= x^-r/( x^-r + x^q + 1 )
similarly,
1/( 1+ x^p+ x^-q) = x^q/( x^q + x^(P+q) + 1)
= x^q/{ x^q + x^-r + 1) { from P+q = -r
put this value above ,
x^-r/( x^-r + x^q + 1) + x^q/( x^q + x^-r+1) +1/( 1+ x^q + x^-r)
= ( x^-r + x^q + 1)/( x^-r + x^q +1)
= 1
( a - b) = P , => ( b -a) = - P
(b - c) = q , => ( c - b) = -q
(c -a) = r , => ( a - c) = -r
hence,
P + q + r = (a - b) + ( b -c) + (c -a) =0
P + q + r = 0
so, question now , convert into
1/( 1+ x^-P + x^r) + 1/( 1+ x^p + x^-q) + 1/( 1+ x^q + x^-r )
now,
1/( 1+ 1/x^p + x^r) = x^p/{x^p + 1 + x^( p+r)}
= x^p/{ x^p + 1 + x^( -q)} { from P+r = -q}
= x^(p+q)/{ x^(P+q) +x^q + 1 }
= x^-r/( x^-r + x^q + 1 )
similarly,
1/( 1+ x^p+ x^-q) = x^q/( x^q + x^(P+q) + 1)
= x^q/{ x^q + x^-r + 1) { from P+q = -r
put this value above ,
x^-r/( x^-r + x^q + 1) + x^q/( x^q + x^-r+1) +1/( 1+ x^q + x^-r)
= ( x^-r + x^q + 1)/( x^-r + x^q +1)
= 1
Answered by
2
Answer:
answer refer in pic
Step-by-step explanation:
hope it will helps you
Attachments:
Similar questions
History,
8 months ago
Economy,
8 months ago
Political Science,
1 year ago
Social Sciences,
1 year ago
English,
1 year ago