Math, asked by charuislove, 1 month ago

Find the value x = 1/(sqrt(40 * 10 ^ - 15))​

Answers

Answered by probrainsme103
0

Concept

Expression means a combination of numbers, symbols and variables in equal to form. It is often used to calculate the variables and evaluate the expression.

Given

Expression: x=1/\sqrt{(40*10^{-15} }

Find

The value of expression  x=1/\sqrt{(40*10^{-15} }

Explanation

We have to find the value of expression x=1/\sqrt{(40*10^{-15} } and to solve this we have to solve the expression with the help of log.

Take log both sides

log x=log(1/\sqrt{(40*10^{-15} })

log x=log 1-log \sqrt{40*10^{-15} }

log x=log1-(log 40+log 10^{-15})/2

log x=log 1 -(log 40-15log 10)/2

log x=log1 -log40/2+15log 10/2

log x =0-1.60205999/2+15/2*1

log x=6.69897005

x= Antilog(6.69897005)

x=5000000

Hence the value of x is 5000000 approx.

#SPJ1

Answered by sourasghotekar123
0

Answer:

X = 5000000

Step-by-step explanation:

     TO FIND:

                   X value.

GIVEN:

       x=\frac{1}{\sqrt{40*10^{-15} } }

       x=\frac{1}{0.0000002}

      x=5000000

The project code is #SPJ1

Similar questions